Computational Statistics and Data Analysis 56 (2012) 3035-3054

Contents lists available at SciVerse ScienceDirect (= COMPL;;:H?"::;

& DATA ANALYSIS

Computational Statistics and Data Analysis

journal homepage: www.elsevier.com/locate/csda 5

Bayesian estimation of generalized hyperbolic skewed student
GARCH models

Philippe J. Deschamps *

Université de Fribourg, Séminaire d’économétrie, Boulevard de Pérolles 90, CH-1700 Fribourg, Switzerland

ARTICLE INFO ABSTRACT
Article history: Efficient posterior simulators for two GARCH models with generalized hyperbolic
Received 4 March 2011 disturbances are presented. The first model, GHt-GARCH, is a threshold GARCH with a

Received in revised form 27 October 2011
Accepted 28 October 2011
Available online 9 November 2011

skewed and heavy-tailed error distribution; in this model, the latent variables that account
for skewness and heavy tails are identically and independently distributed. The second
model, ODLV-GARCH, is formulated in terms of observation-driven latent variables; it
automatically incorporates a risk premium effect. Both models nest the ordinary threshold

ﬁi{zoerge'ssive conditional t-GARCH as a limiting case. The GHt-GARCH and ODLV-GARCH models are compared with

heteroskedasticity each other and with the threshold t-GARCH using five publicly available asset return data
Markov chain Monte Carlo sets, by means of Bayes factors, information criteria, and classical forecast evaluation tools.
Bridge sampling The GHt-GARCH and ODLV-GARCH models both strongly dominate the threshold t-GARCH,
Heavy-tailed skewed distributions and the Bayes factors generally favor GHt-GARCH over ODLV-GARCH. A Markov switching
Generalized hyperbolic distribution extension of GHt-GARCH is also presented. This extension is found to be an empirical
Generalized inverse Gaussian distribution improvement over the single-regime model for one of the five data sets.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The conditional distributions of asset returns are well-known to be leptokurtic. They are also known to exhibit the
“leverage effect”: a negative past innovation on asset returns tends to increase the current volatility. The leptokurticity
justifies the introduction of heavy-tailed (e.g. Student or GED) disturbances in the GARCH class of models, and the “leverage
effect” has motivated consideration of asymmetric extensions of the basic GARCH variance function introduced by Bollerslev
(1986). An example of such an extension is proposed by Glosten et al. (1993). An excellent survey of ARCH and GARCH models
can be found in Bollerslev et al. (1994).

There can be no certainty that the GARCH variance function will capture all the asymmetry present in an asset return
distribution, even when this function incorporates a leverage effect. Presumably for this reason, several GARCH models
with skewed error distributions can be found in the recent literature. Examples are Mittnik and Paolella (2000), Giot and
Laurent (2003), Bauwens and Laurent (2005), Aas and Haff (2006) and Dark (2010). Aas and Haff (2006) provide additional
references. However, none of these contributions propose a Bayesian treatment of the estimation problem: the models
are estimated by maximum likelihood or quasi-maximum likelihood. This absence of Bayesian treatments is unfortunate,
since the Bayesian paradigm offers a natural way of taking both parameter uncertainty and model uncertainty into account.
Geweke and Amisano (2010) show that this is important in the context of forecast evaluation; it is therefore also likely to
have an impact in the context of value at risk or expected shortfall estimation.

On the other hand, the Bayesian Markov chain Monte Carlo (MCMC) estimation of t-GARCH models with symmetric
errors, but possibly asymmetric variance functions is now well-established; an efficient method, based on the previous
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contribution of Nakatsuma (2000), is fully described in Ardia (2008, chapter 5). This method relies on the fact that a Student-t
variate can be represented as a Normal variate with stochastic variance; see, e.g., Geweke (1993). It is indeed this fact which
allows an efficient Bayesian posterior simulator to be designed, using the technique of data augmentation.

As shown by Barndorff-Nielsen (1977), a Normal distribution can also be extended by taking both moments of the Normal
to be functions of an inverted Gamma variate. The resulting distribution is leptokurtic and skewed. It is known as the
Generalized Hyperbolic (GH) distribution, and has been extensively discussed by Prause (1999); see also Paolella (2007,
chapter 9). However, empirical applications of the GH distribution have been few, perhaps due to the fact that its parameters
can be difficult to identify in general.

Recently, however, Aas and Haff (2006) investigated a special case of the GH distribution that may considerably alleviate
the identification problem mentioned above. It has the advantage of nesting the ordinary Student-t as a limiting case, and
can therefore be called the Generalized Hyperbolic Skewed Student-t (GHSST). Aas and Haff (2006) show that the GHSST
can exhibit unequal thickness in both tails, contrary to other skewed extensions of the Student-t, and argue that this offers
more flexibility.

In this paper, we will propose an efficient MCMC posterior simulator, based on data augmentation, that can be used with
models having a GHSST error distribution. It will be applied to two GARCH formulations. The first one (called GHt-GARCH
for short) is a threshold version of the GARCH model in Aas and Haff (2006). In this first model, the inverted Gamma latent
variables are identically distributed. In the second model, by contrast, these latent variables can be interpreted as stochastic
volatilities, since their conditional distributions depend on past observations. The second model can therefore be called an
“observation-driven stochastic volatility model” in the sense of Barndorff-Nielsen (1997), and does not appear to have been
estimated before by any method. In order to avoid possible confusion between this model and the state-space volatility
models that have been proposed in the literature, we will refer to this second model by the acronym ODLV-GARCH, where
ODLYV stands for “observation-driven latent variables”.

Both the ODLV-GARCH and GHt-GARCH models nest the ordinary t-GARCH as a limiting case. So, they belong to a different
class than the state-space formulation used by Nakajima and Omori (2012), who used the GHSST distribution in conjunction
with an evolution equation implying lognormal volatilities.

The t-GARCH, ODLV-GARCH, and GHt-GARCH models will be compared using asset return data, by means of Bayes factors,
Bayes information criteria, and classical forecast evaluation tools.

An outline of the paper is as follows. In Section 2, we state the GHt-GARCH model. Section 3 discusses the ODLV-GARCH
model and the differences between this model and GHt-GARCH. Section 4 describes the posterior simulator. Section 5
presents empirical results based on five publicly available asset return data sets. Section 6 discusses a Markov switching
extension, and Section 7 concludes the paper. In the Appendix, we discuss at length an efficient algorithm for drawing the
latent variables used in data augmentation.

2. The GHt-GARCH model

This section will present an AR(1)-GARCH model with an asymmetric variance function and the skewed heavy-tailed
error distribution discussed in Aas and Haff (2006). We model the log-return y; of an asset at time t as

Yye=¢1+ ¢y +u fort=1,....T, (1)

where u; = o1, and 7, follows a GHSST distribution with zero expectation and unit variance. The variance equation is an
asymmetric GARCH model of the type proposed by Glosten et al. (1993):

of = of + o (U1 > 0) + 34U < O, + ol ,, (2)

where J denotes an indicator function. For simplicity, we take yo and y_; as fixed, and let ug = yo — ¢1 — ¢2y_1, 002 = yé.

The density of u; has a complicated analytical form which involves a Bessel function of u,; see Aas and Haff (2006,
Eq. (8)). Evaluating the Bessel function is very time-consuming. Fortunately, u; can be shown to have the following mixture
representation:

2
Uy = oy <,3 |:Zt - 2] + \/ZT€t> , (3)

where ¢, is a standard Normal random variable, and where Z; is independent of ¢; and has the following inverted Gamma
density:
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