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a b s t r a c t

Returns of risky assets are often modelled as the product of a volatility function and
standard Gaussian white noise. Long range data cannot be adequately approximated by
simple parametric models. The choice is between retaining simplemodels and segmenting
the data, or to use a non-parametric approach. There is not always a clear dividing line
between the two approaches. In particular, modelling the volatility as a piecewise constant
function can be interpreted either as segmentation based on the simple model of constant
volatility, or as an approximation to the observed volatility by a simple function. A precise
concept of local approximation is introduced and it is shown that the sparsity problem of
minimizing the number of intervals of constancy under constraints can be solved using
dynamic programming. The method is applied to the daily returns of the German DAX
index. In a short simulation study it is shown that the method can accurately estimate the
number of breaks for simulated data without prior knowledge of this number.

© 2010 Elsevier B.V. All rights reserved.

1. The problem

Let R(t) be the return of some risky asset in period t . For stocks with end of period price Pt , R(t) = ln(Pt/Pt−1). In
empirical finance, R(t) is often decomposed as

R(t) = σ(t) · Z(t), t = 1, . . . , n, (1)

where Z is standard Gaussian white noise. The method can be adapted to other distributional assumptions such as in Curto
et al. (2009). Thiswill be briefly discussed in Section 6. Themajor problem is howbest tomodel σ(t). In the enormous ARCH-
class of models, for example, σ(t) depends on past values of the R(t)2 while unconditional volatilities remain constant over
time. On the other hand, there seems to emerge a consensus in empirical finance, to be explored in the present paper, that
unconditional volatilities do vary and are best modelled, in the absence of external information such as in Wilfling (2003),
as piecewise constant functions of time (Mercurio and Spokoiny, 2004; Granger and Stărică, 2005).

This can of course be done in various ways. The approach taken below is a non-parametric one in the line of Davies and
Kovac (2001), Vassiliou and Demetriou (2005), Davies (2005, 2006) and Davies et al. (2009). The goal is to give a sparse
piecewise constant approximation to the volatility. It is not assumed that the underlying volatility is piecewise constant
with the goal of identifying the breaks although the method will identify breaks in the volatility if they are sufficiently
pronounced. If the volatility is continuously increasing over a period of time and cannot be well approximated by a constant
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volatility the piecewise constant approximation will have breaks which do not correspond to (the non-existent) breaks
in the underlying volatility. Not all breaks in the piecewise constant approximation will therefore necessarily correspond
to breaks in the underlying volatility although some will. The mathematics of a piecewise constant approximation to a
continuous function and the associated theory of non-parametric regression are given in Boysen et al. (2009).

The method exploits the fact that, under the model (1)
t∈I

R(t)2

σ(t)2
∼ χ2

|I| (2)

for any nonempty interval I ⊂ {1, . . . , n}where |I| denotes the number of elements of I . This implies that, for all α ∈ (0, 1),
there exists αn ∈ (0, 1) such that
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= α. (3)

Let An (αn) denote the set of all functions σ : {1, . . . , n} → R+ such that the inequalities within the brackets of (3) hold. It
may be checked that for αn > 0.5 (which will always be the case)
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2
< |I| < χ2

|I|, 1+αn
2

(4)

for all non-empty intervals I ⊂ {1, . . . , n}. This implies that σ̃ (t) := |R(t)| lies inAn(αn), which is consequently a nonempty
set (ignoring the possibility that |R(t)| = 0). The problem then becomes one of sensibly choosing amongst the many
possibilities.

In line with Davies (2005, 2006) a sparsity approach is taken. The problem is to determine those functions σ(t) inAn(αn)
which are piecewise constant on intervals and minimize the number of intervals of constancy. This is a computational
problemwhich is essentially unsolvable as it stands. Amodified version based on local adequacy can be solved using dynamic
programming. It is considered in detail below.

2. Minimizing the number of intervals

To define the modified problem let I1, . . . , Ik ⊂ {1, . . . , n}, Iν ∩ Iµ = ∅ and I1 ∪ · · · ∪ Ik = {1, . . . , n}, be the intervals
where σ(t) is constant, with value σIν , (σIν > 0). The inequalities in Eq. (3) imply
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2

, ∀I ⊂ Iν, ν = 1, . . . , k. (5)

A volatility function which satisfies these constraints is called locally adequate. Local adequacy is a weaker condition than
(3) and it turns out that the sparsity problem can be solved for piecewise constant locally adequate volatility functions. It
follows from (5) that
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Given the left endpoint sv of Iv , the lower bound σ 2
l (Iv) is an increasing function of the right endpoint tv , and the upper

bound σ 2
u (Iv) is a decreasing function of the right endpoint tv of Iv . This suggests the following algorithm to obtain a locally

adequate volatility function: start with s1 = 1, t1 = 1 and let t1 increase until the upper bound becomes smaller than the
lower bound at t1 + 1. Setting s2 = t1 + 1 the process is repeated until the end of the sample is reached.

Theorem 1. The volatility function σ constructed above is locally adequate and has the minimum number of intervals of
constancy.

Proof. Assume that there exists another locally adequate volatility function σ̃ with corresponding partition Ĩ1, . . . , Ĩk̃ with
k̃ < k. It is clear that Ĩ1 ⊂ I1 and by induction it follows that ∪i

j=1 Ĩj ⊂ ∪
i
j=1 Ij. Consequently

{1, . . . , n} =
k̃

j=1

Ĩj ⊂
k̃

j=1

Ij
≠

⊂ {1, . . . , n} (7)

which is a contradiction. �
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