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a b s t r a c t

A binary unsupervised classification problemwhere each observation is associatedwith an
unobserved label that needs to be retrieved is considered.More precisely, it is assumed that
there are two groups of observation: normal and abnormal. The ‘normal’ observations are
coming from a known distribution whereas the distribution of the ‘abnormal’ observations
is unknown. Several models have been developed to fit this unknown distribution. An
alternative based on a mixture of Gaussian distributions is proposed. The inference is
performed within a variational Bayesian framework and the aim is to infer the posterior
probability of belonging to the class of interest. To this end, it makes little sense to
estimate the number of mixture components since each mixture model provides more
or less relevant information to the posterior probability estimation. By computing a
weighted average (named aggregated estimator) over themodel collection, BayesianModel
Averaging (BMA) is one way of combining models in order to account for information
provided by each model. An aim is then the estimation of the weights and the posterior
probability for a specific model. Optimal approximations of these quantities from the
variational theory are derived; other approximations of the weights are also proposed.
It is assumed that the data are dependent (Markovian dependency) and hence a Hidden
Markov Model is considered. A simulation study is carried out to evaluate the accuracy of
the estimates in terms of classification performance. An illustration on both epidemiologic
and genetic datasets is presented.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Binary unsupervised classification. We consider an unsupervised classification problemwhere each observation is associated
with an unobserved label that we want to retrieve. Such problems occur in a wide variety of domains, such as climate,
epidemiology (see Sun and Cai (2009)), or genomics (see McLachlan et al. (2002)) where we want to distinguish ‘normal’
observations from abnormal ones or, equivalently, to distinguish pure noise from signal. In such situations, some prior
information about the distribution of ‘normal’ observations, or about the distribution of the noise is often available and
we want to take advantage of it.
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More precisely, based on observations X = {Xt}, we want to retrieve the unknown binary labels S = {St} associated
with each of them.We assume that ‘normal’ observations (labelled 0) have distribution φ, whereas ‘abnormal’ observations
(labelled 1) have distribution f .We further assume that the null distributionφ is known,whereas the alternative distribution
f is not. From a classification perspective, we want to compute

Tt = Pr{St = 0|X}. (1)

Bayesian model averaging (BMA). The probability Tt depends on the unknown distribution f . Manymodels can be considered
to fit this distribution and we denote M = {fm;m = 1, . . . ,M} a finite collection of suchmodels. As none of these models is
likely to be the true one, it seems more natural to gather information provided by each of them, rather than to try to select
the ‘best’ one. The Bayesian framework is natural for this purpose, as we have to deal with model uncertainty.

Bayesianmodel averaging (BMA) has beenmainly developed byHoeting et al. (1999) and provides the general framework
of our work. It has been demonstrated that BMA can improve predictive performance and parameter estimation in Madigan
and Raftery (1993), Madigan and Hutchinson (1995), Volinsky et al. (1997), Raftery and Zheng (2003) or Ruggieri and
Lawrence (2011). Jaakkola and Jordan (1998) also demonstrated that model averaging often provides a gain in terms of
classification and fitting. The determination of the weight αm associated with each model m when averaging is a key
ingredient of all these approaches.
Weight determination. As shown in Hoeting et al. (1999) the standard Bayesian reasoning leads to αm = Pr{M = m|X},
where M stands for the model. In a classical context, the calculation of αm requires one to integrate the joint conditional
distribution P(M, Θ|X), where Θ is the vector of model parameters, and several approaches can be used. The BIC criterion
(Schwarz, 1978) is based on a Laplace approximation of this integral, which is questionable for small sample sizes. One
other commonly used method is MCMC (Monte Carlo Markov Chain, Andrieu (2003)) which samples the distribution and
can provide an accurate estimation of the joint conditional distribution, but at the cost of huge (sometimes prohibitive)
computational time.

In the unsupervised classification context, the problem is even more difficult as we need to integrate the conditional
P(M, Θ, S|X) since the labels are unobserved. This distribution is generally not tractable but, for a given model, Beal
and Ghahramani (2003) developed a variational Bayes strategy to approximate P(Θ, S|X). Variational techniques aim at
minimising the Kullback–Leibler (KL) divergence between P(Θ, S|X) and an approximated distribution QΘ,S (Corduneanu
and Bishop, 2001; Wainwright and Jordan, 2008; Ren and Hodges, 2011). Jaakkola and Jordan (1998) proved that the
variational approximation can be improved by using a mixture of distributions rather than factorised distribution as the
approximating distribution. A mixture distribution Qmix is chosen to minimise the KL-divergence with respect to P(Θ, S|X).
Unfortunately, their method averages the log of Qmix over all the configurations which leads to untractable computation and
a costly algorithm involving a smoothing distribution.
Our contribution. In this article, we propose variational-based weights for model averaging, in presence of a Markov
dependency between the unobserved labels. We prove that these weights are optimal in terms of KL-divergence from
the true conditional distribution P(M|X). To this end, we optimise the KL-divergence between P(Θ, S,M|X) and an
approximated distribution QΘ,S,M (Section 2). This optimisation problem differs from that of Jaakkola and Jordan (1998)
(see their Eq. (14)). Based on the approximated distribution of P(θ, S|M, X), we derive other estimations of the weights.

We then reconsider the case of unsupervised classification and consider a collection M of mixtures of parametric
exponential family distributions (Section 3). We propose a complete inference procedure that does not require any specific
development in terms of an inference algorithm. In order to assess our approach, we propose a simulation study which
highlights the gain of model averaging in terms of binary classification (Section 4). We also present two illustrations on
epidemiologic and genomic datasets (Section 5). An R package named VBMA4hmm (Variational Bayes Models Averaging for
hidden Markov models) is available on the CRAN.

2. Variational weights

The aim of model averaging is to account for the information in each model of a collection of M models. To do so, we
need to calculate the weight of each model. In this section, we propose three different weights based on the variational
Bayes theory.

2.1. A two-step optimisation problem

In a Bayesian Model Averaging context, we focus on averaged estimators to account for model uncertainty. It implies
evaluating the conditional distribution:

P(M|X) =


P(H,M|X)dH, (2)

where H stands for all hidden variables, that is H = (S, Θ), and M denotes the model.
In order to calculate this distribution, we need to compute the joint posterior distribution of H and M . Due to the latent

structure of the problem, this is not feasible. However, the mean field/variational theory allows an approximation of this
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