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a b s t r a c t

Under model correctness, highly accurate inference on a scalar interest parameter in
the presence of a nuisance parameter can be achieved by several routes, among them
considering the bootstrap distribution of the signed root likelihood ratio statistic. The
context of model mis-specification is considered and inference based on a robust form
of the signed root statistic is discussed in detail. Stability of the distribution of the
statistic allows accurate inference, outperforming that based on first-order asymptotic
approximation, by considering the bootstrap distribution of the statistic under the
incorrectly assumed distribution. Comparisons of this simple approach with alternative
analytic and non-parametric inference schemes are discussed.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Let Y = {Y1, . . . , Yn} be a random sample of size n, from a distribution assumed to have probability density function
f (y; η), with η = (ψ, λ), where ψ is a scalar interest parameter and λ a nuisance parameter, possibly vector-valued.
Consider testing the null hypothesisH0 : ψ = ψ0, withψ0 specified, against a one-sided alternative of the formH1 : ψ < ψ0
or H1 : ψ > ψ0.

Let l(η) ≡ l(η; Y ) be the log-likelihood for η based on Y . Also, denote by η̂ = (ψ̂, λ̂) the overall maximum likelihood
estimator of η, and by λ̂ψ the constrained maximum likelihood estimator of λ, for a given fixed value of ψ .

Inference may be based on the signed square root likelihood ratio statistic, defined by

R ≡ R(ψ0) = sgn(ψ̂ − ψ0)[2{l(ψ̂, λ̂)− l(ψ0, λ̂0)}]
1/2,

where sgn(x) = −1 if x < 0, = 0 if x = 0 and = 1 if x > 0, and λ̂0 = λ̂ψ0 . Under H0, R(ψ0) is asymptotically distributed
according to the standard normal distribution N(0, 1), provided the assumed parametric distribution is correct. The level of
error of the N(0, 1) approximation to the sampling distribution of R(ψ0) is of the first-order, O(n−1/2) in the sample size n.

Twomain approaches emerge (Young, 2009) to reduce this level of error, to the third-order,O(n−3/2): analytic adjustment
of the statistic R, and replacement of the N(0, 1) approximation by a bootstrap estimate of the distribution of the statistic.
A key form of the analytically adjusted statistic is Barndorff–Nielsen’s R∗ statistic (Barndorff-Nielsen, 1986), which is of the
form R∗

= R + log(U/R)/R, in terms of an analytic adjustment quantity U . DiCiccio et al. (2001) and Lee and Young (2005)
considered inference based on the bootstrap distribution obtained by considering the distribution of R(ψ0) under sampling
from the density f (y;ψ0, λ̂0). Both of these third-order accurate inference procedures are observed in many situations to
achieve spectacularly low levels of error even in small sample settings.
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Concern here is with the stated inference problem in circumstances when Y is a random sample from a density g(y)
which does not belong to the assumed parametric family of densities f (y;ψ, λ). Specific consideration is given to the
following formulation of the inference problem under model mis-specification, as described, for example, by Kent (1982)
and Stafford (1996). Let η(g) = {ψ(g), λ(g)} minimise the Kullback–Leibler distance between g(y) and f (y; η), given by
log{g(y)/f (y; η)}g(y)dy. Then consider testing H0 : ψ = ψ0, with ψ0 = ψ(g). Such an inference problem is natural

whenever ψ(g) has a direct interpretation under the true g(y), for example as an expected value. In these circumstances,
the statistic R(ψ0) is asymptotically distributed as N(0, v), where v ≡ v(g) ≠ 1 in general. It has been suggested
(Stafford, 1996: see also relatedwork by Viraswami and Reid, 1996, 1998) that the signed root likelihood ratio statistic R(ψ0)

be ‘robustified’ by rescaling, through construction of a statistic of the form R′
≡ R′(ψ0) = R/

√
v̂, where v̂ is an empirical

estimate, constructed from Y , of the asymptotic variance v. Such a modified statistic R′(ψ0) is asymptotically distributed as
standard normal under H0. Again, the level of error of a N(0, 1) approximation to the sampling distribution is of the order
O(n−1/2).

The purpose here is to examine closely the use of the statistic R′ for inference, expanding on comments made by
Lu and Young (2010). The objective is to stress the following methodological conclusions. When there is no model mis-
specification, highly accurate inference can be achieved by bootstrapping the distribution of R′: since R′ is asymptotically
distributed as N(0, 1) it follows directly from Lee and Young (2005) that this procedure achieves the same third-order
accuracy as inference based on normal approximation to the distribution of Barndorff–Nielsen’s R∗ statistic. Under model
mis-specification, R∗ is non-robust and N(0, 1) approximation to its sampling distribution does not achieve a test with the
correct asymptotic level. However, the parametric bootstrap procedure, which again samples from the (incorrect) density
f (y;ψ0, λ̂0) is shown to yield accurate inference. Though in principle the level of error,O(n−1/2), is no better than that offered
bynormal approximation to the sampling distribution, in practice the bootstrapprocedure substantially outperformsnormal
approximation. The key to this property is that the distribution of R′ typically does not depend much on the true density
underlying the sample data Y , but converges rather slowly to its asymptotic limit. Therefore, using the sampling distribution
of R′ under thewrong density f (y;ψ0, λ̂0) as a surrogate for its distribution under the true density g is often a rather accurate
estimation procedure, in particular for small n.

These observations, together with empirical comparisons between the parametric bootstrap procedure and non-
parametric alternatives, suggest strongly that in the inference problem being considered the most effective approach is
based on the distribution of the modified statistic R′, under sampling from the density f (y;ψ0, λ̂0). This procedure yields
highly accurate inference, with the same low levels of error as obtained by use of the R∗ statistic, when the parametric
assumption is correct, while protecting against modelmis-specification. The analysis demonstrates, in particular, that in the
latter setting the parametric bootstrap procedure, based on the wrong distribution, will often outperform the asymptotic
method based on the N(0, 1) approximation to the distribution of R′. This indicates that higher levels of accuracy than
obtained by first-order asymptotic methods will often be achievable in this setting.

2. Asymptotic distribution of R′

Use is made of the notation, the stochastic expansion of R and the expression for v̂ provided in Stafford (1996) to find the
cumulants of the robust statistic R′. These cumulants are seen to be asymptotically the same as the cumulants of N(0, 1),
thereby showing that the asymptotic distribution of R′ is standard normal.

Suppose η = (η1, η2, . . . , ηd), where η1 = ψ is the scalar interest parameter, (η2, . . . , ηd) = λ is the vector nuisance
parameter and d is the dimension of η. Let li = li(η) = log f (yi; η) be the log-likelihood of the ith observation, and let
li;s =

∂
∂ηs

li(η), li;st =
∂2

∂ηs∂ηt
li(η) be the partial derivatives of the log-likelihood for the i th observation, s, t = 1, . . . , d.

Denote by η0 = (ψ0, λ0) the value of η which minimises the Kullback–Leibler distance, as described in the previous
section.

In the following definitions and derivations, it is not necessary to assume whether the true distribution is mis-specified
by f or not: the same asymptotic results hold true for both cases of g = f and g ≠ f .

Define

Ist ≡ Ist(η0) = Eg(y)[l1;st ]|η=η0 ,
Is,t ≡ Is,t(η0) = Eg(y)[l1;sl1;t ]|η=η0 ,

and

Zs ≡ Zs(η0) =
1

√
n

n
i=1

li;s|η=η0 ,

where Eg(y)[.] denotes the expectation with respect to g(y).
Further define a d × dmatrix Awith components Ist and denote the components of the d × dmatrix −A−1 by Ist , where

A−1 is the usual matrix inverse of A. Denote by Îst ≡ Îst(η̂) =
1
n

n
i=1 li;st |η=η̂ and Îs,t ≡ Îs,t(η̂) =

1
n

n
i=1 li;sli;t |η=η̂ estimates

of Ist and Is,t respectively. An estimate of A is Â, obtained by the replacement of Ist in A by Îst . Then, Îst , which is an estimate
of Ist , can be read off from the corresponding (s, t)-entry of the matrix −Â−1.
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