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GPAV was recently developed for efficient solving large-scale multivariate MR problems.
When such problems are too large, the GPAV becomes too demanding in terms of
computational time and memory. An approach, that extends the application area of the
GPAV to encompass much larger MR problems, is presented. It is based on segmentation

Sﬁﬁgﬁ;ﬁi‘ programming ofa large—scalg MR proplem int.0 a set of moderate-scale MR prob}ems. each splved by the
Large-scale optimization GPAV. The major contribution is the development of a computationally efficient strategy
Least distance problem that produces a monotonic response using the local solutions. A theoretically motivated
Monotonic regression trend-following technique is introduced to ensure higher accuracy of the solution. The
Partially ordered data set presented results of extensive simulations on very large data sets demonstrate the high
Pool-adjacent-violators algorithm efficiency of the new algorithm.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The monotonic regression (MR) problem often originates from applications in which observations are composed of a
vector of p explanatory variables x € RP and aresponse variable y € R. The values of x and y for each observationi = 1,...,n
are denoted as X; and Y;, respectively, and they are collected in the input data set D = {(X;,Y;), i = 1,...,n}, which is
frequently used as an input to applied MR problems.

It is assumed that the unknown true response function f (x) is monotonic, i.e., increasing with respect to some variables
and decreasing with respect to others. For simplicity, we assume that f is isotonic, i.e. that it increases with respect to each
component of x = (xy, ..., X,). This means that

f&X) <f(x", Vx,x" € R suchthatx’ < x’,

where X' < x” means that x; < x/ for eachi = 1, ..., p. In real-life applications, the data sets are seldom monotonic, and
hence X; < X; does not necessarily imply Y; < Y;. This is due to some observation errors,y = f (x) + €.

Here, we focus on the case of p > 1, for which the set of observed explanatory variables X1, ..., X; is usually partially
ordered. This means that some pairs (X;, X;) may not be comparable, i.e. neither X; < X; nor X; < X; holds. The original
function f (x) is not available and cannot be restored from the data set D, and it is even impossible to restore the function
values f(X;) fori = 1, ..., n. Nevertheless, by using the knowledge of monotonicity and data set D, these function values
can be approximated by solving the corresponding MR problem whose solution f* € R" is an approximation of the vector
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(f(X1), ..., f(Xy)). Moreover, the components of f* are consistent with the monotonicity and are as close as possible to the
observed response values Y;. In the weighted L,-norm, the MR problem is formulated as

n
min Y wi(fi — Y’

(1)
i=1
st. fi<fi ffXi<X,i,j=1,...,n,

where w, > 0, k =1, ..., nare given values of weights.

The MR problem has numerous applications in operations research, statistics, biology, signal processing, and other areas;
see Barlow et al. (1972), Robertson et al. (1988) and Oh and Dong (2011). The most challenging of the practical problems in
this context are characterized by a large n value. Various techniques for solving problem (1) have been developed in recent
decades. The pioneering work of Ayer et al. (1955) led to introduction of the Pool-Adjacent-Violators (PAV) algorithm. This
algorithm is used to solve a special case of the MR problem, typically for p = 1, where the observations are completely
(linearly) ordered, i.e., either X; < X; or X; < X; holds for each pair of observations (X;, Xj). A profound framework
for MR theory was developed by Barlow et al. (1972) and Robertson et al. (1988). At present, the most widely known
exact algorithms for solving the general MR problems with a partially ordered input data set D include the following:
the minimum lower set algorithm of Brunk (1955), the min-max algorithm described by Lee (1983), the network-based
algorithm of Maxwell and Muchstadt (1985), and the IBC algorithm introduced by Block et al. (1994). Unfortunately, these
exact algorithms can only solve problems that contain a relatively small number of observations, and thus they cannot
provide satisfactory results within a reasonable amount of time when addressing medium- or large-scale problems.

In our recent papers (Burdakov et al., 2006a,b), we presented a generalized PAV algorithm called the GPAV, with which
high-accuracy solutions of large-scale multivariate MR problems can be obtained for a partially ordered D. Here, we present
a segmentation-based algorithm (designated SB), which extends the area of its applications to much larger MR problems,
that are too demanding for the original GPAV and all other well-known MR algorithms in terms of computational time and
memory. The SB splits a large-scale MR problem into a number of medium-size problems and solves them using the GPAV.
The fitted values are monotonic only locally within each segment, but the monotonicity may be violated on the boundary
of the neighbor segments. The SB offers a special, computationally efficient strategy that produces an overall monotonic fit
on the basis of the local solutions.

The remainder of this paper is organized as follows. In Section 2, we introduce and discuss an alternative formulation
of problem (1). The SB algorithm is presented in Section 3, and in Section 4 we consider a trend-following order aimed at
making this algorithm more efficient. In Section 5, we justify the correctness of the SB and study the theoretical properties
of this algorithm. In Section 6, the worst-case complexity of the SB is estimated. In Section 7, we analyze the computational
performance of the SB and compare it with performance of the GPAV. Section 8 contains conclusions and comments.

2. Alternative formulation and the GPAV algorithm

The problem formulation (1) is natural for most practical applications. In computational science, as well as in our previous
papers (Burdakov et al., 2006a,b), an alternative formulation is used in which a graph G = G(N, E) with a set of nodes N and
a set of edges E is supposed to be given. Eachnodei € N = {1, ..., n} is associated with the observation i, and each edge
(i,j) € E is associated with the relation X; < X;. The graph is obviously acyclic.

Here, we use the following definitions and notations. A node i € N is a predecessor of node j € N if there is a directed
path in the graph from i to j. A block is a connected subset B C N such that if there is a directed path between two nodes in
B, then all the nodes in the path belong to B. The MR problem admits the following graph formulation:

min Y wi(fi — Y)?
ieN (2)
st.  fi<f forall(i,j) €E,

or, equivalently,
min Z wi(f; — V)
ieN (3)
st.  fi<f forall(i,j):A;=1,

where A is n x n adjacency matrix (Cormen et al., 2001) with the components

A |1 i) e,
Y710, otherwise.

Thus, for any given partially ordered input data set D, one can construct a corresponding acyclic graph G (or equivalently
an adjacency matrix A). In other words, formulation (1) implies (2) for some G, or it implies (3) for some A. It is not difficult
to show that the reverse is also true, i.e. given an acyclic graph G and an associated observed response Y, it is possible
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