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a b s t r a c t

We propose a new approach, the forward functional testing (FFT) procedure, to cluster
number selection for functional data clustering. We present a framework of subspace
projected functional data clustering based on the functional multiplicative random-effects
model, and propose to perform functional hypothesis tests on equivalence of cluster
structures to identify the number of clusters. The aim is to find the maximum number of
distinctive clusters while retaining significant differences between cluster structures. The
null hypotheses comprise equalities between the cluster mean functions and between the
sets of cluster eigenfunctions of the covariance kernels. Bootstrap resampling methods are
developed to construct reference distributions of the derived test statistics. We compare
several other cluster number selection criteria, extended from methods of multivariate
data, with the proposed FFT procedure. The performance of the proposed approaches is
examined by simulation studies, with applications to clustering gene expression profiles.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In cluster analysis, a partition-based clustering algorithmusually requires a predeterminednumber of clusters. A properly
selected cluster number is critical to search for the optimal partitions within a data set. While numerous approaches have
been proposed for choosing a reasonable cluster number in multivariate data, Gordon (1999) referred to the classical
selection methods as stopping rules that optimize a particular objective function in terms of cluster numbers. These
objective functions are mostly developed by observing the decreasing trend of within-cluster dispersion or the increasing
trend of between-cluster dispersion as the cluster number increases. Examples in earlier literature include the index of
Caliński and Harabasz (1974), rule of Hartigan (1975), silhouette statistic of Rousseeuw (1987), index of Krzanowski and Lai
(1988), and approximate Bayes factor of a model-based approach (Fraley and Raftery, 1998). Studies for comparing various
classical cluster number selection methods were provided byMilligan and Cooper (1985), Hardy (1996) and Gordon (1999).
More recent studies in cluster number selection include methods based on the gap statistic (Tibshirani et al., 2001) and
weighted gap statistic (Yan and Ye, 2007), the approach according to the largest jump in transformed distortion (Sugar and
James, 2003), and the method depending on the prediction strength for cluster validation assessment and cluster number
estimation (Tibshirani and Walther, 2005). While these aforementioned approaches are designed for multivariate data, the
focus of this study is on functional data clustering.

Clustering the longitudinally collected functional data has been remarkablywell discussed recently. Numerous functional
clustering methods have arisen for finding homogenous subgroups of functional data according to the patterns of the
curves. A simple approach is to cluster the finite-dimensional coefficients of basis function expansions using a classical
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multivariate clustering algorithm (e.g. Abraham et al., 2003; García-Escudero and Gordaliza, 2005; Serban andWasserman,
2005; Tarpey, 2007). Another popular approach is model-based functional clustering using mixed-effects models coupled
with the smoothing techniques (e.g. Luan and Li, 2003; James and Sugar, 2003; Ray and Mallick, 2006; Ma and Zhong,
2008). Based on the nonparametric kernel approach, Ferraty and Vieu (2006) proposed a descending hierarchical method
which combines functional data features with a kernel-type functional density estimation. Various depth-based methods
for functional data classification have also been discussed recently (e.g. Cuevas et al., 2007; López-Pintado and Romo,
2006) with the major focus on supervised learning context. Furthermore, clustering curves that simultaneously considers
curve registration for amplitude and phase variability is another interesting topic in functional data clustering (Liu and
Yang, 2009; Sangalli et al., 2010; Tang and Müller, 2009). While most clustering approaches are developed for particularly
defined centrality features of curve data, they are mainly based on the mean function. Functional clustering methods that
simultaneously take into account the mean and the covariance structures of random functions are proven to be useful.
The k-centers functional clustering (FC) of Chiou and Li (2007) regards cluster centers through projection onto the cluster
functional principal component (FPC) subspaces such that individual cluster membership is determined by theminimum L2
distance between the observed curve and the projected function. When the shape patterns of curves are of major interest,
proper similarity measures and models are required to achieve the goal. Chiou and Li (2008) proposed a correlation-based
FC method that considers shape similarity through maximization of functional correlations coupled with a more flexible
shape function model.

In this study, cluster number selection is developed along the lines of subspace projection based functional data
clustering. In particular, the method is proposed under the subspace projected functional clustering (SPFC) framework that
simultaneously considers differences in the mean and the covariance structures, with the k-centers FC and the correlation-
based FC mentioned above as special cases. We adopt the notion that each observed curve is viewed as a realization of
a random function and is sampled from a mixture of stochastic processes. Each subprocess represents a cluster through
the structure of a FPC subspace that corresponds to a Karhunen–Loève expansion coupled with a random scale. Under the
SPFC framework with clusters defined via subspace projection, it is natural to develop a cluster number selection method
based upon functional hypothesis tests on cluster subspaces such that the identified clusters are significantly distinct from
each other in terms of cluster subspace structures. The null hypotheses comprise equalities between the cluster mean
functions and between the sets of cluster eigenfunctions of the covariance kernels. Bootstrap resampling methods are
developed to construct the reference distributions of the derived test statistics. The proposed forward functional testing (FFT)
procedure aims at selecting the maximum number of distinctive clusters while retaining significant differences between
cluster structures. The FFT starts with a small initial cluster number, and then it is increased in steps of one until it reaches
the maximum number of distinguishable clusters through the functional hypothesis test procedure. It is shown that the
proposed FFT procedure performs reasonably well for data under various cluster structures in our numerical studies.

The rest of this paper is organized as follows. Section 2 introduces the functional multiplicative random-effects model
under the SPFC framework. Section 3 presents the procedure of testing differences between two cluster structures, and
proposes the FFT algorithmandother relevant cluster number selection procedures for functional data clustering. Simulation
studies to examine numerical performance of the proposed FFT and other selection procedures are presented in Section 4.
Section 5 illustrates practical applications to two sets of gene expression profile data. Concluding remarks are summarized
in Section 6.

2. Subspace projected functional clustering

2.1. Functional multiplicative random-effects model

Suppose that n independent random functions X1, X2, . . . , Xn are sampled from a stochastic process X in L2(dω), where
L2(dω) represents a Hilbert space of square integrable functions with respect to the measure dω(t) = w(t)dt on a real
interval T = [a, b], for a < b, where dt is a Lebesgue measure and w(t) is a nonnegative weight function such that
w(t) > 0 for t ∈ T and w(t) = 0 otherwise. The inner product of two functions f and g in L2(dω) is defined as
⟨f , g⟩ =


f (t)g(t)dω(t) and the L2 norm is defined as‖·‖ = ⟨·, ·⟩1/2. Here, a constantweight functionw(t) = (b−a)−1I[t∈T ]

is chosen in this study. Further, assume that the process X has a smooth mean function µx(t) = E(X(t)) and a smooth
covariance function Gx(s, t) = Cov(X(s), X(t)) (twice continuously differentiable). We consider a functional multiplicative
random-effects model for the random function Xi(t) such that

Xi(t) = θi


µx(t) +

∞−
j=1

ξijϕxj(t)


= θiµx(t) +

∞−
j=1

τijϕxj(t), (1)

where themultiplicative random scales θi are positive and uncorrelatedwith E(θi) = 1 andVar(θi) = σ 2
θ . Themean function

of Xi can be expressed as µx(t) = µ0 + µz(t), where µ0 = ⟨µx, 1⟩ is constant with respect to t, µz(t) is a fixed mean shape
function and ⟨µz, 1⟩ = 0 consequently. The random effects ξij are uncorrelated with zero mean and variance σ 2

ξj
. Here, we

assume that ξij and θi are independent. The random effects τij = θiξij = ⟨Xi − θiµx, ϕxj⟩ are uncorrelated with zero mean
and variance σ 2

τj
= (σ 2

θ + 1)σ 2
ξj
. The set of functions {ϕxj} forms an orthornormal basis in L2 associated with the covariance



Download English Version:

https://daneshyari.com/en/article/417635

Download Persian Version:

https://daneshyari.com/article/417635

Daneshyari.com

https://daneshyari.com/en/article/417635
https://daneshyari.com/article/417635
https://daneshyari.com

