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a b s t r a c t

The index of dissimilarity, often denoted by Delta, is commonly used, especially in social
science andwith large datasets, to describe the lack of fit ofmodels for categorical data. The
definition and sampling properties of the index for general loglinear and log-multiplicative
models are investigated. It is argued that in some applications a standardized version of the
index is appropriate for interpretation. A simple, approximate variance formula is derived
for the index, whether standardized or not. A simple bias reduction formula is also given.
The accuracy of these formulae and of confidence intervals based upon them is investigated
in a simulation study based on large-scale social mobility data.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the presence of a large amount of informative data, even ‘good’ models are typically rejected by conventional lack-of-
fit tests based on statistical significance. In such cases attention turns to assessment of the extent to which a model’s lack
of fit is important from the subject-matter point of view. For example, in situations where a statistical model is to be used
mainly or entirely as a basis for forecasting, predictive performance will usually be a more important criterion than formal
goodness of fit.
In the context ofmodels for categorical data a commonly used statistic is the so-called index of dissimilarity or dissimilarity

index (e.g. Agresti, 2002, pp. 329–330), which aims to quantify lack of model fit by estimating the smallest fraction of the
population under study that would need to be re-classified in order to make the fitted model exactly correct. The index of
dissimilarity thus has a fairly direct interpretation in terms of the magnitude of departures from themodel, and the statistic
itself is simple to compute frommodel residuals (Section 2 below). These appealing properties have led to routine use of the
index of dissimilarity for model assessment, especially in social science where the computed statistic is sometimes referred
to simply as ‘Delta’ (e.g. Erola andMoisio, 2007; Jonsson et al., 2009; Pfeffer, 2008; Uggen and Blackstone, 2004;Wells et al.,
2003). The Delta statistic is used as a supplement to, rather than a replacement for, model-selection criteria such as those
based on the log likelihood. The present work explores the definition and estimation of the index of dissimilarity in a fairly
general setting.
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Previously the sample index of dissimilarity has been used mainly as a descriptive device, and in particular no measure
of the associated uncertainty, such as an estimated standard error, has been available. A primary aim of this paper is to
rectify this deficiency. An approximate variance formula is derived in Section 4, based on large-sample arguments. The same
large-sample considerations also suggest an approximate bias correction, given in Section 5. These results apply to general
parametric models for data collected by multinomial or Poisson sampling, including any loglinear and log-multiplicative
models; and in keepingwith the simplicity of the index itself, the variance and bias formulae are straightforward to compute
fromquantitiesmade available by standard software for suchmodels. As a preliminary to all of thiswork, the definition of the
index of dissimilarity itself is placed under scrutiny, and it is suggested that often a standardized version of the index will be
ofmost interest (Section 3). The accuracy of the various approximations and the effects of standardization are investigated in
Section 6 using simulation, based on data from six countries in a large-scale study of intergenerational social class mobility.

2. Index of dissimilarity and models for categorical data

Suppose that Y = (Y1, . . . , YK )′ is a vector of K observed cell counts corresponding to the cells of a possibly
multidimensional contingency table with a sample size N =

∑K
i=1 Yi and observed cell proportions p = (p1, . . . , pK )′ =

Y/N . The corresponding vectors of fitted counts and proportions for some modelM of interest estimated from the data are
denoted by Ŷ = (Ŷ1, . . . , ŶK )′ and π̂ = (π̂1, . . . , π̂K )′ = Ŷ/N . The index of dissimilarity for the fitted model is defined as

∆̂ =

K∑
i=1
|Yi − Ŷi|

2N
=

K∑
i=1
|pi − π̂i|

2
=
δ̂
′

ê
2
, (1)

where ê = (ê1, . . . , êK )′ = (p1−π̂1, . . . , pK−π̂K )′ are the raw residuals, and their signs are indicated by δ̂ = (δ̂1, . . . , δ̂K )′ =
(sgn(ê1), . . . , sgn(êK ))′. We assume that the fitted model has the property that

∑
i Ŷi = N , so that the residuals sum to zero

and π̂ are the fitted cell proportions. This will be true, in particular, for hierarchical loglinear and log-multiplicative models
fitted by maximum likelihood, which are the main focus of this article. The index ∆̂ can then be interpreted as the smallest
proportion of observations in Y that would need to re-classified to other cells to make all observed cell counts exactly equal
to the fitted values.
A version of the index of dissimilarity has a long history in sociology and human geography as ameasure of residential and

geographic segregation. According to Goodman and Kruskal (1959), the indexwas first suggested by Gini (1914); other early
references include Jahn et al. (1947) and Duncan and Duncan (1955); see also White (1986) for a more recent introduction
and further references on segregation indices. Suppose thatwewant to compare the distributions of two groups, for example
blacks and whites, across C locations such as schools or neighborhoods. The populations are completely segregated if no
members of the two groups share the same location, and completely unsegregated if the proportions of the two groups are
the same in every location. The segregation index of dissimilarity is defined as

D =
1
2

C∑
j=1

∣∣∣∣Y1jN1 − Y2jN2
∣∣∣∣ , (2)

where Yij is the number of members of group i in location j, and Ni is total number of members of group i in the sample. The
index (2) can be interpreted as the generalmeasure (1)where the observed data are one of the rows of the group-by-location
table and the ‘model’ is given by the column proportions in the other row. Alternatively, D is ∆̂ for the independence model
for the two-way table, divided byN2/(2N1N2), which is themaximum value that ∆̂ can achieve for the independencemodel
when the row totals are regarded as fixed; for more general models the maximum achievable ∆̂ is usually not available in
a closed form.
The statistic ∆̂ estimates a corresponding population quantity. Suppose that the true distribution of Y given N is

multinomial with cell probabilitiesπ = (π1, . . . , πK )′, so that p converges toπ as N increases. It is assumed that πi > 0 for
all i. If the table has structural zeros for which the cell probability is known to be zero, these contribute nothing to (1) and
can be omitted from Y.
Suppose further that the fitted proportions π̂ converge to π∗ = (π∗1 , . . . , π

∗

K )
′, which differ from π unless model M is

the true model. The population value of the index of dissimilarity is then defined as

∆ =

K∑
i=1
|πi − π

∗

i |

2
=
δ′e
2
, (3)

where e = (e1, . . . , eK )′ = (π1 − π∗1 , . . . , πK − π
∗

K )
′ and δ = (δ1, . . . , δK )′ = (sgn(e1), . . . , sgn(eK ))′. This is consistently

estimated by ∆̂. The index (3) is the total variation distance between the two discrete distributions with probabilities π
and π∗ (Feller, 1971, the definition there is for 2∆). It can also be interpreted as ∆ = supA⊂K |π(A) − π∗(A)| where
π(A) =

∑
i∈A πi, π

∗(A) =
∑
i∈A π

∗

i andK = {1, 2, . . . , K}.
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