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a b s t r a c t

In this paper, the partially varying coefficient single index proportional hazards regression
models are discussed. All unknown functions are fitted by polynomial B splines. The index
parameters and B-spline coefficients are estimated by the partial likelihood method and
a two-step Newton–Raphson algorithm. Consistency and asymptotic normality of the
estimators of all the parameters are derived. Through a simulation study and the VA data
example,we illustrate that the proposed estimationprocedure is accurate, rapid and stable.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The proportional hazards (PH) regressionmodel, proposed by Cox (1972, 1975), is one of the primary tools in biomedical
studies involving survival times. Let T be a lifetime variable, then its corresponding hazards function is given by

λ(t|X) = λ0(t)eβ
T X , (1)

where X ∈ Rp is a covariate vector. The function λ0(t) is the conditional hazard function of T when X = 0, called baseline
function. λ0(t) is usually assumed to be unknown. Under model (1), the conditional failure rates associated with any two
values of covariate X are proportional. β is regression coefficient vector, which is used to assess the dependence of the
distribution of survival time T on X . The extension of model (1) to time-dependent covariates are easily dealt with by the
counting process and the martingale approaches (Andersen and Gill, 1982). The detailed parametric and nonparametric
inferences can be found in the books by Cox and Oakes (1984), Andersen et al. (1993) and Fan and Gijbels (1996) etc.
The classical assumption of Cox PHmodel is that the covariates have linear effect on the log hazard function. However, in

real applications, that assumption is not always met and may lead to wrong conclusions. To overcome this obstacle, many
statisticians have extended the Cox PH model (1). Fan et al. (1997), Gentleman and Crowley (1991), Gu (1996), O’Sullivan
(1993) and Tibshirani and Hastie (1987) discussed the nonparametric hazards models:

λ(t|X) = λ0(t)eψ(X) (2)
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whereψ(·) is an unspecified smooth function. However, the estimation of unstructured nonparametric function may suffer
from the so-called ‘‘curse of dimensionality’’ (Bellman, 1961) and, thus, is not practically suitable when the dimension of the
covariate vector X is high. Structured instead of nonstructured nonparametricmodelswere introduced bymany authors. For
example, Sleeper and Harrington (1990) modeled the nonlinear covariate effects in the Coxmodel by additive approach and
polynomial splines; Gray (1992) considered additive and time-varying coefficient Cox regressionmodels by use of penalized
splines method; Using functional ANOVA decompositions, Huang et al. (2000) studied a general class of structured models
including additivemodels as a specific case. Besides these, some authors have applied partially linear additive or single index
models to hazard regression (Gorgens, 2004; Huang, 1999; Lu et al., 2006; Nielsen et al., 1998; Wang, 2004). Wang (2004)
proposed a type of single index models with hazards function λ(t|X) = λ0(t)ψ(βTX) and Huang and Liu (2006) considered
another type of single index hazards model with conditional hazards function of the form

λ(t|X) = λ0(t)eψ(β
T X), (3)

where ψ(·) is similar to the one in (2). They approximated this unknown link function by spline smoothing method. The
inference procedures for the link function and index parameters were given. However, some of covariates may have linear
effects on the log hazards. Therefore, Sun et al. (2008) discussed partially linear single index hazards models specified as

λ(t|X, V ) = λ0(t)eψ(β
T X)+αT V (4)

with covariates X ∈ Rp, V ∈ Rq and unknown link function ψ(·) as above. In their paper, they discussed the inference
procedure and its properties formodel (4). They also analyzed how to partition the covariates into the nonlinear component,
X , and linear component, V , in details. The model (4) can be seen as the generalization of the model (1) and model (3).
But the common assumption of all the three models (1), (3) and (4) is that the covariates have constant effects on the log
hazard directly or through unknown link function indirectly. In practice, this may be invalidated. For example, in Veterian’s
Administration Lung Cancer study comparing a test therapy with a standard therapy for inoperable lung cancer, discussed
in Section 3.2, the primary end point is the time to death. As we discussed, the efficiency of therapy is related with patient’s
age. That is, we cannot say that one therapyworks absolutely better than another for all patients. Cai and Sun (2003), Marzec
andMarzec (1997), Murphy and Sen (1991), Murphy (1993), Sasieni andWinnett (2003), Tian et al. (2005), Verweij and van
Houwelingen (1995) and Zucker and Karr (1990) and others considered time-dependent coefficients (varying coefficient)
hazards models:

λ(t|X) = λ0(t)eβ(t)
T X (5)

with unknown smooth function vector β(t) = (β1(t), β2(t), . . . , βp(t))T .
In this paper, motivated by the model (4) and (5), we proposed partially varying coefficient single index proportional

hazards models as follows:

λ(t|X, V ) = λ0(t)eψ(β
T X)+α(U)T V , (6)

where ψ(·) and λ0(t) is similar to ones in model (4) and (5); X ∈ Rp is the nonlinear covariate vector; V ∈ Rq is varying
coefficient component covariate vector; β = (β1, β2, . . . , βp)

T
∈ Rp is regression coefficient vector of X with ‖β‖ = 1

and first element larger than 0 for identification without loss of generality; α(·) = (α1(·), α2(·), . . . , αq(·))
T
∈ Rq is the

functional coefficient vector of V . The effect of covariate V on the log hazard may vary with U . U is a covariate, which may
be one entry of X, V , t itself or some other covariate. For instance, U can be the age of subjects or the experiment time.
Furthermore, when U is one entry of X , the varying coefficient part can be seen as the interaction of X and V .
The model (6) is flexible enough to cover a variety of situations. When ψ(x) = x and α(·) = 0 or ψ(·) = 0 and α(·) is a

constant vector, themodel becomesmodel (1);When α(·) = 0, or equivalently, there are no effects of the predictors V on T ,
(6) is nonparametric single index hazard model (3); When α(·) is a constant function vector, the model (6) becomes model
(4); Whenψ(·) = 0, the model (6) is reduced to model (5); If p = 1, the model will be partially varying coefficient additive
hazard model (Huang, 1999). Hence, it is interesting to investigate the properties of model (6). Note that any constant in
ψ(·) can be absorbed in λ0(t) and any scale of β can be absorbed in ψ(·). So we impose ψ(0) = 0 for identification. The
main focus of this paper is making inference for the parameters β and functional coefficients αi(·)’s under right random
censoring.
The rest of paper is organized as follows. In Section 2, we describe our proposed model, including the estimation

procedure, consistency, asymptotic normality, inference and implementation. A simulation study and VA data example are
given in Section 3, which also serves the purpose of proposed inference procedure and computation algorithm. Section 4
gives some brief conclusions. All proofs and computation details are left in the Appendix.

2. The estimation procedure

2.1. B-spline estimation

In this section, we present the B-spline estimation procedure for unknown functions in model (6) under right censoring
scheme. Denote C as the censoring variable, Z = min(T , C) as the observed event times and δ = I(T ≤ C) as the censoring
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