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a b s t r a c t

HIV dynamical models are often based on non-linear systems of ordinary differential
equations (ODE), which do not have an analytical solution. Introducing random effects
in such models leads to very challenging non-linear mixed-effects models. To avoid the
numerical computation of multiple integrals involved in the likelihood, a hierarchical
likelihood (h-likelihood) approach, treated in the spirit of a penalized likelihood is
proposed. The asymptotic distribution of the maximum h-likelihood estimators (MHLE)
for fixed effects is given. The MHLE are slightly biased but the bias can be made negligible
by using a parametric bootstrap procedure. An efficient algorithm for maximizing the h-
likelihood is proposed. A simulation study, based on a classical HIV dynamical model,
confirms the good properties of theMHLE. Themethod is applied to the analysis of a clinical
trial.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Since the influential paper of Ho et al. (1995) there has been a strong impetus to develop mathematical models
for better understanding the interaction between HIV and the immune system; see Nowak and May (2000) and Huang
(2008). However the statistical inference in these models has raised major challenges coming from the entanglement of
identifiability andnumerical problems. The first problem is numerical: in general the trajectories of the interesting quantities
(e.g. viral load or CD4 counts) are solutions of non-linear differential equations that do not have analytical solutions. The
second is the identifiability problem: the observations recorded on one subject are not informative enough to estimate
all the parameters of the model. Two types of identifiability problems can be distinguished: the structural and practical
identifiability (Rodriguez-Fernandez et al., 2006; Miao et al., 2008, 2009). The first problem is either avoided, simplifying
the models to obtain analytical solutions Wu et al. (1998) and Wu and Ding (1999), or solved by using numerical solvers of
ordinary differential equations (ODE); Ramsay et al. (2007) proposed an original approach but did not apply it to a random
effectmodel. As for the second problem, both structural and practical identifiability problems can be removed by introducing
a priori knowledge on the parameters: this is done either in the frequentist way by fixing values of some parameters,
or in the Bayesian way by introducing strong priors. Practical identifiability can be much improved by considering that
the particular values of the parameters for each subject are realizations of random variables with a given distribution in
the population (Guedj et al., 2007a). This puts the problem in the framework of non-linear mixed effects models. Laplace
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approximation of the numerical integrals involved in the computation of the likelihood has been proposed (Beal and Sheiner,
1982; LindstromandBates, 1990). AdaptiveGaussian quadrature is another possibility (Davidian andGiltinan, 1995); seeWu
(2005) for a review of statistical issues in HIV models. Recently a stochastic approximation EM (SAEM) algorithm has been
proposed (Kuhn and Lavielle, 2005; Donnet and Samson, 2007). In the specific case of HIV dynamics models a Bayesian
approach has been proposed by Putter et al. (2002) and Huang et al. (2006), while a special algorithm for computing the
likelihood and maximizing it using a Newton-like method has been proposed by Guedj et al. (2007b). However all these
methods present difficulties and can be time-consuming.
The hierarchical likelihood (h-likelihood) has been proposed for generalized linear models with random effects by Lee

and Nelder (1996) and further studied in Lee and Nelder (2001) and Lee et al. (2006) and for non-linear mixed effects
models by Noh and Lee (2008). This is very similar to an approach called penalized likelihood used by McGilchrist and
Aisbett (1991) and Therneau and Grambsch (2000) for frailty models. The main idea is to treat the random effects (or
the frailties) as parameters and to find estimates of all the parameters by maximizing a function which is essentially the
loglikelihood conditional on the random effects minus a penalty term which takes large values if the ‘‘random’’ parameters
are very dispersed. Penalized likelihood has also been used for function estimation (O’Sullivan, 1988). The advantage of this
approach is that it may avoid computing numerical integrals. The curse of dimensionality is transferred from the dimension
of numerical integrals to the dimension of the space on which maximization takes place. There are problems with this
approach. One is the asymptotic distribution of the estimators of the fixed parameters; another is the estimation of the
variances of the random parameters. Consistency of the maximum h-likelihood estimators (MHLE) has not been proved.
It is often suggested to revert to the likelihood to obtain consistent estimators of the fixed parameters, but then the most
important benefits of h-likelihood in terms of computational burden is lost. Last but not least is the problem of maximizing
a complicated function over several hundred parameters.
The aim of this paper is to develop a (partly non-standard) h-likelihood approach to HIV dynamics models which

completely avoids computation of the likelihood. This is in the spirit of penalized likelihood in the sense that it is not the
goal to precisely estimate the variances of the random effects. One aim is to study the asymptotic distribution of the MHLE
for a given choice of the penalty. Another aim is to find an efficient maximization algorithm.
The paper is organized as follows. In Section 2 a statistical model based on an ODE system in a general form is described,

a particular form of which will be used for simulations. In Section 3 the h-likelihood is described and the asymptotic
distribution of theMHLE for fixed effects when the number of subjects tends toward infinity is given. A parametric bootstrap
procedure to correct the bias of the MHLE is proposed. In Section 4 a strategy for choosing the penalty based on the guess
of an upper bound of the variance of the random effects is also proposed. An efficient maximization algorithm is presented
in Section 5. Section 6 presents a simulation study. Section 7 presents the analysis of a clinical trial. Section 8 concludes.

2. A population dynamics model

2.1. A general model for the system

The dynamics of the concentrations of virions and CD4+ T-cells (in short, CD4) in different stages (represented by X i(t))
can be described by an ODE system. A population model, as in Guedj et al. (2007b), allows the values of the parameters to
vary between subjects. For subject iwith i = 1, . . . n, this can be written:

dX i(t)
dt
= f (X i(t), ξi),

X i(0) = h(ξi),
(1)

where X i(t) = (X i1(t), . . . , X
i
K (t))

′ is the vector of the K state variables (or components); ξi = (ξ i1, . . . , ξ
i
p) is a vector of

p individual parameters which appears naturally in the ODE system and has generally a biological interpretation. Similarly
to generalized (mixed) linear models, a link function is introduced, which relates ξi to a linear model involving explanatory
variables and random effects:

Ψl(ξ
i
l ) = ξ̃

i
l =

{
φl + bil + z il (t)βl, l = 1, . . . , R,
φl + z il (t)βl, l = R+ 1, . . . , p,

(2)

where φl is the intercept, z il (t) are vectors of the explanatory variables associated with the fixed effects of the lth biological
parameter; these explanatory variables may be time-dependent, in which case the ODE system has time-dependent
parameters. The βl ’s are vectors of regression coefficients; bi = (b

i
1, . . . , b

i
R) is the individual vector of random effects. It is

assumed that bi ∼ N (0,Σ)withΣ diagonalwith diagonal elements τ 2l . More generalmodels could of course be considered.

2.2. Model for the observations

Let Yijm denote the jth measurement of themth observable component for subject i at time tijm; It is assumed that:

Yijm = gm(X i(tijm))+ εijm, i = 1, . . . , n, j = 1, . . . , nim, (3)
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