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a b s t r a c t

Principal Component Analysis (PCA) is an important tool in multivariate analysis, in
particular when faced with high dimensional data. There has been much done with regard
to sensitivity analysis and the development of influence diagnostics for the eigenvector
estimators that define the sample principal components. However, little, if any, has been
done in this setting with regard to the sample principal components themselves. In this
paper we develop a sensitivity measure for principal components associated with the
covariance matrix that is very much related to the influence function (Hampel, 1974). This
influence measure is based on the average squared canonical correlation and differs from
the existing measures in that it assesses the influence of certain observational types on the
sample principal components. We use this measure to derive an influence diagnostic that
satisfies two key criteria being (i) it detects influential observations with respect to subsets
of sample principal components and (ii) is efficient to calculate even in high dimensions.
We use several microarray datasets to show that our measure satisfies both criteria.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

With many areas of research requiring analysis of data consisting of a large number of measurement variables, principal
component analysis (PCA) has never been more popular. Seeking to explain variability of high dimensional datasets in just
a few summary measures, PCA provides a useful means to explore such data for which standard analysis would otherwise
be daunting, if not impossible. As an example for which there has been an abundance of recent research, consider DNA
microarray datawhich typically consists of thousands ofmeasurement variables associatedwith gene expression. For almost
all microarray datasets, the number of measurement variables (p) far exceeds the number of samples (n). Whilst we are
limited with respect to our own inability to visualize data in high dimensions, it is also true that many popular methods of
analysis are not capable of treating data of this type. As an example consider Fisher’s Linear Discriminant (Fisher, 1936) for
discriminant analysis which is not applicable here due to the singularity of the sample covariance matrices. However, if just
a few summary measures are instead available and used in place of the p measurement variables, then the method could
be utilized. As such PCA is an appealing dimension reduction technique for many areas of research. A useful reference that
discusses PCA in the framework of microarray data is Wall et al. (2003).
Let {xi}ni=1 denote a sample of n p-dimensional vectors of observed values where x =

∑n
i=1 xi/n and S =

∑n
i=1

(xi − x) (xi − x)> /(n − 1) denote the sample mean and sample covariance matrix respectively. Let
{̂
λj, η̂j

}p
j=1 denote the

set of eigenvalue–eigenvector pairs associated with the spectral decomposition of S such that λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p and
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where {̂ηj}
p
j=1 forms an orthonormal basis for Rp. Then the jth sample principal component (PC) for the ith observation is

defined as α̂ji = η̂>j xi (or ω̂ji = η̂
>

j (xi − x) if centering is preferred) where we will refer to α̂j = [̂αji]ni=1 or ω̂j = [ω̂ji]
n
i=1

collectively as the jth sample principal component. Given that λ̂j equals the variance of the jth sample PC, typically the first
L sample PCs are retained as useful summary measurements that explain a large proportion of the total sample variability.
It is also true, however, that L is often simply chosen to be 1, 2 or 3 so as to allow for simple visualization of the data. For
more on PCA see, for example, Jolliffe (2002).
There has been much work with regard to sensitivity of PCA via influence analysis and subsequent creation of influence

diagnostics that may be used to detect influential observations (see, for e.g. Critchley, 1985; Tanaka, 1988; Tanaka and
Castaño-Tostado, 1990; Bénasséni, 1990; Prendergast, 2008). However, these studies are primarily focused on influence
associated with the eigenvector estimates that are used to define the sample PCs, rather than the sample PCs themselves. It
is therefore our aim to construct an influence diagnostic that satisfies the following two key criteria:
Criterion 1: Can be used to detect influential observations with respect to the sample principal components rather than the
directions used to define them.
Criterion 2: Is efficient and hence practically applicable to high dimensional datasets.
In creating a diagnostic that satisfies Criteria 1 and 2, we formally identify the model based measure that is very much

linked to the robustness tool known as the influence function (Hampel, 1974) and highlight how this provides insight into
the sensitivity of PCA in general that differs from the aforementioned sensitivity studies.
In the next sectionwewill briefly review currently available influence diagnostics associatedwith PCA before developing

our own measure in Section 3. A sample based version of this measure will be considered in Section 4 where we apply the
diagnostic to several microarray examples. Of critical importance in Section 4 is, firstly, that our measure is capable of
detecting influential observations (to satisfy Criterion 1) and secondly that it is efficient to compute for large datasets (to
satisfy Criterion 2). We will conclude this paper with a discussion in Section 5.

2. Influence measures for eigenvector estimators

2.1. Model based influence diagnostics

Consider the contamination distribution given as
Fε = (1− ε)F + ε∆x0 (1)

where ∆x0 puts all of its probability mass at the contaminant x0 and ε is the proportion of contamination contributing to
Fε . Throughout we will suppose that, for a random X ∼ F , we have E(X) = µ and Var(X) = 6. We will also suppose that
{λj, ηj}

p
j=1 is the set of eigenvalue–eigenvector pairs of 6where λ1 ≥ λ2 ≥ · · · ≥ λp.

Let t denote an arbitrary statistical estimator defined at F and Fε . Then Hampel (1974) introduced the influence function
defined to be

IF(t, F; x0) = lim
ε↓0

t(Fε)− t(F)
ε

=
∂

∂ε
t(Fε)

∣∣∣∣
ε=0

(2)

which provides the relative influence of an infinitesimally small proportion of contamination. The usefulness of thismeasure
will become more apparent when we discuss links with sample versions later.
Let ηj denote the functional for the jth eigenvector estimator associated with the usual covariance matrix estimator.

Critchley (1985) provides the perturbation

ηj(Fε) = ηj + εβj +
1
2
ε2γj + O(ε

3) (3)

where, for ωk = η>k (x0 − µ),

βj = IF(ηj, F; x0) = ωj
p∑
k=1
k6=j

ωk

λj − λk
ηk

and

γj = −

p∑
r=1
r 6=j

{
ω2j ω

2
r

(λj − λr)2
ηr −

2ω2r
λj − λr

βj +
2ω3j ωr

(λj − λr)2
ηr

}
.

Hence, for a small ε, IF(ηj, F; x0) provides a useful measure of influence for the jth eigenvector estimator since a large
IF(ηj, F; x0) results in a large difference in ηj(Fε) from ηj. An obvious measure of influence for the contaminant x0 is
‖IF(ηj, F; x0)‖, the length of the influence function vector for x0, and this can be used to assess the individual influence
of the contaminant on each of the required eigenvector estimators.
Wewill now look atmeasures that canbeused to detect influence on the spanof the eigenvector estimators of interest. Let

S ⊂ {1, 2, . . . , p}be the set of indices indicating the eigenvectors to be retained and let0S = [ηj]j∈S denote thematrixwhose
jth column is the jth eigenvector indexed in S. Usually one would choose S = {1, . . . , L} so that 0S is simply [η1, . . . ,ηL].
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