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a b s t r a c t

To provide a class of hazard functions in analyzing survival data, the power family of
transformations has been proposed in the literature. Our work in this paper considers
the existence of cured patients and random effects due to clustering of survival data
in a long-term survivor model setting. A power family of transformations is assumed
for the relative risk in the hazard function component. Such an extension allows us to
flexibly base the inferences on various hazard function assumptions, particularly taking
exponential and linear relative risk as two special cases. The parameter governing the
power transformation could be determined by means of a modified Akaike information
criterion (AIC). Applications to two sets of survival data illustrate the use of the proposed
long-term survivor mixture model. A simulation study is carried out to examine the
performance of the estimators under the proposed numerical estimation scheme.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Cured patients (or the so-called long-term survivors) have been increasingly observed in clinical trial studies with the
advancement in medical treatment methods and operative techniques in recent years; see for example Maller and Zhou
(1996). The traditional assumption that all individuals will eventually experience a failure event does not seem to be
appropriate in these cases where the individuals are cured and thus free of the disease or risk. The mixture cure model (or
long-term survivormodel), combining the cured fraction and at-risk group, has been proposed by Farewell (1982) to analyze
the survival datawith curedpatients. Particularly, a logistic transform is used tomodel the curedproportion, and the baseline
hazard function for the at-risk group is assumed to follow theWeibull distribution. Kuk and Chen (1992) considered a semi-
parametric approach to construct the likelihood function and estimate the parameters by a Monte Carlo approximation.
Peng and Dear (2000) and Sy and Taylor (2000) modified Kuk and Chen’s approach and the estimation of parameters was
achieved by implementing an EM algorithm.
In some cases, failure time data obtained from clinical trials are conducted in several clusters. The individuals in the same

hospital (or cluster)may share some common factors which originate from the unobservable characteristics of the hospital’s
operations or its environment. Ignoring this potential heterogeneity due to the presence of random hospital effects may
result in biased estimates of the fixed effect parameters. In previous studies, the random effects were incorporated into
the underlying model for accommodating the dependence structure within clusters. Yau and Ng (2001) adapted Farewell’s
model formulation and take the random hospital effects into account. The generalized linear mixed models (GLMM)
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(McGilchrist, 1994) approach was adopted to obtain the approximate residual maximum likelihood (REML) estimates for
the fixed effect and variance component parameters.
For proportional hazards regression model, the exponential relative risk function is commonly adopted. However, for

some kinds of survival data in practice, simply adopting the exponential relative risk function without justification may be
misleading. For instance, other function forms such as the linear relative risk model (Prentice and Mason, 1986) were found
to be more meaningful. Guerrero and Johnson (1982) proposed the use of a general relative risk function. With the use of
Box–Cox transformation, the exponential relative risk assumption was relaxed and could be considered as a special case
instead. Following the same line, Yau and McGilchrist (1999), Zeng et al. (2005) and Yin and Ibrahim (2005) adopted the
power family of transformations to provide a class of hazard functions in analyzing survival data. Influence diagnostics for
survival models with power family of transformations in the hazard function can be found in Xiang et al. (2007).
Our work in this paper considers the long-term survivor model with random effects (Yau and Ng, 2001) but assuming

the general relative risk function in the hazard function component of the model. Specifically, it extends Yau and Ng’s
(2001) model by incorporating a power family of transformation in the hazard function for the at-risk sub-population. Such
extension allows us to flexibly base the inferences on various hazard function assumptions, particularly taking exponential
and linear relative risk as two special cases. The parameter governing the power transformation could be determined by
means of a modified Akaike information criterion (AIC).
In Section 2, the random effects cure model with a general relative risk function form is described. The estimation

procedure within the GLMM framework is outlined in Section 3. For illustration, in Section 4, the proposed model is applied
to analyze two sets of data. In Section 5, a simulation study is carried out to examine the performance of the approximate
REML estimators for the proposed random effects cure model. Further discussions are presented in Section 6.

2. Random effects cure model with general relative risk function

Let tij be the observed survival time for individual j in clinic i, and xij is the corresponding vector of covariates, j =
1, . . . , ni, i = 1, . . . ,M,

∑M
i=1 ni = N . Then the mixture cure model can be written as

S(tij; xij) = 1− π(xij)+ π(xij)Su(tij; xij) (1)

where π(xij) is the probability of belonging to the at-risk group and can be specified by a logistic form (Farewell, 1982)

π(xij) =
exp ξij(xij)
1+ exp ξij(xij)

, ξij(xij) = γ0 + x′ijγ + Vi (2)

Vi corresponds to the random effect of clinic i associated with the cured probability. For the at-risk (uncured) group, the
survival function Su(tij; xij) is defined via the hazard function which is assumed to follow a power family of functions

h(tij) = h0(tij) exp{f (ηij)}, f (ηij) =
{
ln(1+ kηij)1/k, k 6= 0
ηij k = 0 (3)

where h0(t)is the unspecified baseline hazard function and the linear predictor ηij relates to both fixed and random effects:
ηij = x′ijβ + Ui. Model (3) becomes the Cox proportional hazards model h(tij) = h0(tij) exp(ηij)when k→ 0, and it reduces
to the linear relative risk function form h(tij) = h0(tij)(1 + ηij)if k = 1. Note that the transformation parameter k could
mathematically take any value on the real line. However our primary interests will focus only on k ∈ [0, 1] since this
restriction represents themost commonly used relative risk functions in practice. As a remark, the term ‘‘relative risk’’ is not
exactly suitable since the interpretation ofβ changes as the value of k changes. Nevertheless, for the sake of convenience and
easier exposition, the term ‘‘relative risk’’ is used in the paper. Within the GLMM framework, the random effects of clinic i in
the hazard function and the cured probability, denoted by Ui and Vi, are typically assumed to follow the Normal distribution
N(0, θ1) and N(0, θ2) respectively.
We arrange the N failure/censoring times in increasing order and denote the k distinct event times by t(1) < t(2) < · · · <

t(k). Following Kuk and Chen’s (1992) argument, the conditional log-likelihood with random effects being fixed, l1, can be
rewritten as

l1 = log
N∏
i=1

π
yi
i (1− πi)

1−yi + log
k∏
i=1

exp f (η(i))∑
h∈R(t(i))

yh exp f (ηh)
(4a)

where η(i) is the linear predictor corresponding to t(i). y is the latent indicator which equals to 0 if individual being cured or
1 otherwise. Define u = (U1, . . . ,UM)′ and v = (V1, . . . , VM)′. The logarithm of the joint probability density function of the
random effects is

l2 = −
1
2

(
M log 2πθ1 +

u′u
θ1

)
−
1
2

(
M log 2πθ2 +

v′v

θ2

)
. (4b)
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