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a b s t r a c t

We describe a fast, data-driven bandwidth selection procedure for kernel conditional den-
sity estimation (KCDE). Specifically, we give aMonte Carlo dual-tree algorithm for efficient,
error-controlled approximation of a cross-validated likelihood objective. While exact eval-
uation of this objective has an unscalableO(n2) computational cost, ourmethod is practical
and shows speedup factors as high as 286,000 when applied to real multivariate datasets
containing up to onemillion points. In absolute terms, computation times are reduced from
months to minutes. This enables applications at much greater scale than previously pos-
sible. The core idea in our method is to first derive a standard deterministic dual-tree ap-
proximation, whose loose deterministic bounds we then replace with tight, probabilistic
Monte Carlo bounds. The resulting Monte Carlo dual-tree algorithm exhibits strong error
control and high speedup across a broad range of datasets several orders of magnitude
greater in size than those reported in previous work. The cost of this high acceleration is
the loss of the formal error guarantee of the deterministic dual-tree framework; however,
our experiments show that error is still amply controlled by our Monte Carlo algorithm,
and themany-order-of-magnitude speedups are worth this sacrifice in the large-data case,
where cross-validated bandwidth selection for KCDE would otherwise be impractical.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Conditional density estimation models the probability density f (y|x) of a random variable y given a random vector x.
For example, in Fig. 1 each contour line perpendicular to the x axis represents a conditional density. This can be viewed
as a generalization of regression: in regression we estimate the expectation E[y|x], while in conditional density estimation
we model the full distribution. Fig. 1 illustrates a conditional bimodality such that E[y|x] is insufficiently descriptive for
many tasks. Estimating conditional densities is much harder than regression, but having the full distribution is powerful
because it allows one to extract almost any quantities of interest, including expectations, modes, prediction intervals, outlier
boundaries, samples, expectations of non-linear functions of y, etc. Conditional densities also facilitate data visualization and
exploration. Conditional density estimates are of fundamental utility, applicable to such problems as time series prediction,
static regression with prediction intervals, learning in Bayes nets and other graphical models, and so on. The estimation
problem is challenging, however, because the data from which f (y|x)must be learned generally do not include any exact x
for which f (y|x)will be queried.
Nonparametric kernel techniques address this issue by interpolating between the points that have been seen, with-

out strong assumptions on distributional forms. In nonparametric conditional density estimation, we make only minimal
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Fig. 1. Distribution f (y, x) for which f (y|x) can be either bimodal or unimodal, depending on x. The bold curve represents f (y|x = 80).

assumptions about the smoothness of f (y|x) without assuming any parametric form. Freedom from parametric assump-
tions is very often desirable when dealing with complex data, as we rarely have knowledge of true distributional struc-
ture. Nonparametric conditional density estimation has received some attention from statisticians and econometrics
researchers (Gooijer and Zerom, 2003; Fan and Yim, 2004; Hansen, 2004; Bashtannyk and Hyndman, 2001; Hyndman et al.,
1996; Rosenblatt, 1969), though relatively little when compared to nonparametric regression. Perhaps the main obstacle
to wider adoption has been its computational cost, which is the problem addressed in this paper. Note that what we mean
by nonparametric conditional density estimation is different from other techniques with similar names, such as conditional
probability estimation (which refers to outputting class probabilities in the classification setting, also referred to as class-
conditional probabilities).
In the present work, we consider the standard kernel conditional density estimator that first received serious attention

in the work of Fan et al. (1996) and Hyndman et al. (1996), though it was originally proposed by Rosenblatt (1969). This is a
direct kernel estimator of conditional densities, as opposed to approaches that separately estimate f (y, x) and f (x), which are
combined to estimate f (y|x) = f (y, x)/f (x) (see Stender, 2006). Direct estimation of conditional densities allows parameter
estimation to be formulated as the optimization of a single, unified objective function,whereas separate estimation of f (y, x)
and f (x) optimizes two different objective functions that may not produce the highest-quality conditional densities.
Although the direct estimator we use is consistent given mild conditions on its bandwidths, practical use has been

hampered by the lack of an efficient data-driven bandwidth selection procedure, upon which any kernel estimator depends
critically. We propose a new method for efficiently selecting bandwidths to maximize cross-validated likelihood, an
objective with some advantages over the squared-error criteria used in prior work. The speedup of this method is obtained
by combining Monte Carlo techniques with a dual-tree-based approximation (see Gray and Moore, 2000) of the likelihood
function. This approximation approach belongs to a new class of multi-tree Monte Carlo methods (Holmes, 2009). We
present two versions of fast likelihood approximation, one analogous to previous dual-tree algorithms with deterministic
error control, which gives speedups on the order of 1.5–10-fold in our experiments, and the other with a new, probabilistic
Monte Carlo error control mechanism, which gives much larger speedups—as high as 286,000-fold on one million points.
With this fast learning procedure we can address datasets that are both higher in dimension and several orders of

magnitude larger in size than those reported in previous work, which has been confined to bivariate datasets of size
no greater than 1000 (Fan and Yim, 2004). We present results that validate the accuracy and speedup of our likelihood
approximation on real datasets possessing a variety of sizes and dimensionalities. Most of these datasets were previously
impractical to address with naively computed data-driven techniques. Thus, our fast bandwidth optimization method
enables applications at scales that were previously unreachable. We conclude that kernel conditional density estimation
is a powerful technique that is made substantially more efficient by our fast approximate optimization procedure, with
many opportunities for application in a variety of statistical fields.
In the remainder of the paper we first describe the standard kernel conditional density estimator; this is followed by

a discussion of the bandwidth selection problem and our choice of likelihood cross-validation as a bandwidth selection
objective, at which point we derive our dual-tree approximation algorithms (both deterministic and Monte Carlo), show
experimental performance, and conclude with a summary of results and implications.



Download English Version:

https://daneshyari.com/en/article/417779

Download Persian Version:

https://daneshyari.com/article/417779

Daneshyari.com

https://daneshyari.com/en/article/417779
https://daneshyari.com/article/417779
https://daneshyari.com

