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a b s t r a c t

Factorial K-means analysis (FKM) and Reduced K-means analysis (RKM) are clustering
methods that aim at simultaneously achieving a clustering of the objects and a dimension
reduction of the variables. Because a comprehensive comparison between FKM and RKM
is lacking in the literature so far, a theoretical and simulation-based comparison between
FKM and RKM is provided. It is shown theoretically how FKM’s versus RKM’s performances
are affected by the presence of residuals within the clustering subspace and/or within
its orthocomplement in the observed data. The simulation study confirmed that for both
FKM and RKM, the cluster membership recovery generally deteriorates with increasing
amount of overlap between clusters. Furthermore, the conjectures were confirmed that
for FKM the subspace recovery deteriorates with increasing relative sizes of subspace
residuals compared to the complement residuals, and that the reverse holds for RKM. As
such, FKM and RKM complement each other. When the majority of the variables reflect
the clustering structure, and/or standardized variables are being analyzed, RKM can be
expected to perform reasonably well. However, because both RKM and FKM may suffer
from subspace andmembership recovery problems, it is essential to critically evaluate their
solutions on the basis of the content of the clustering problem at hand.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Cluster analysis aims at assigning a number of objects to a limited number of homogeneous classes. This is often done
on the basis of the objects’ scores on multiple variables. The inclusion of variables in a cluster analysis that hardly reflect, or
even do not reflect the clustering structure may hinder or even completely obscure the recovery of the underlying cluster
structure (e.g. Milligan, 1996). To deal with those problems, various approaches can be taken. Onemay use variable selection
(e.g. Steinley and Brusco, 2008) or variable weighting (e.g. Milligan and Cooper, 1988), implying that some variables are
discarded from the cluster analysis or are given less weight. An alternative is the subspace clustering approach, which rests
on the assumption that the cluster centroids are located in a subspace of the variables.
A relatively easy subspace clustering approach, which does not require distributional assumptions, uses component

analysis. The first attempt in this directionwas a two-step procedure, where a principal component analysiswas followed by
a cluster analysis. After various warnings against this so-called tandem clustering (e.g. Arabie and Hubert, 1994), De Soete
and Carroll (1994) proposed Reduced K-means analysis (RKM), which appeared to equal the earlier proposed Projection
Pursuit Clustering (Bock, 1987). RKM simultaneously searches for a clustering of the objects, based on the K-means criterion
(MacQueen, 1967), and a dimension reduction of the variables, based on component analysis. The notion that RKMmay fail
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to recover the clustering of the objects when the data contain much variance in directions orthogonal to the subspace of the
data in which the clusters reside, led to the proposal of Factorial K-means analysis (FKM Vichi and Kiers, 2001).
A comprehensive comparison between FKM and RKM is lacking, both theoretically and empirically. After all, the

simulation study that Vichi and Kiers (2001) conducted to support their claims about the superior performance of FKM
over RKM consisted of the analysis of a single simulated data set only. This means that it is unknownwhen RKM and/or FKM
would yield good insight into the cluster structure in empirical data, and hence when to use RKM or FKM. The purpose of
the present article is to clarify this issue, so that FKM and RKM can be sensibly used in practice. It will be shown that FKM
and RKM serve different goals. Therefore FKM and RKM complement each other: FKM is of use when RKM fails, and vice
versa.
The remainder of the paper is organized as follows. Section 2 recapitulates the RKM and FKMmodels. Section 3 provides

a theoretical comparison of the performance of RKM and FKM. Section 4 presents a simulation study to examine the
conjectures from Section 3, and to evaluate the performance of RKM and FKM in various conditions. The use of FKM and RKM
is illustrated with an empirical example in Section 5. The paper closes with a discussion of the reported findings (Section 6).

2. Factorial and reduced K-means

2.1. Notation

The following notation is adopted in this paper:

I Number of objects, indexed i = 1, . . . , I .
J Number of variables, indexed j = 1, . . . , J .
C Number of clusters, indexed c = 1, . . . , C .
Q Number of components to which the variables are reduced, indexed q = 1, . . . ,Q .
X An I × J matrix containing the observed scores of I objects on J variables. Variables are

supposed to be centered. In the case they have different units of measurements they are
commonly standardized, i.e., so that they have a mean of zero and unit variances.

U A binary I × C membership matrix, which specifies to which cluster each object belongs,
i.e., uic = 1 if object i belongs to cluster c , and uic = 0 otherwise;

∑C
c=1 uic = 1.

F C × Q centroid matrix, where fcq is the centroid score of cluster c on component q.
A J × Q columnwise orthonormal loading matrix; i.e., A′A = IQ .
A⊥ J × (J − Q ) columnwise orthonormal matrix for which it holds that A′A⊥ = 0.
EA′ I × Q subspace residual matrix.
E⊥A⊥′ I × (J − Q ) complement residual matrix.
T Q × Q orthonormal rotation matrix.
0I×J I × J matrix consisting of zeros.
IJ J × J identity matrix.
diag(c) Diagonal matrix with diagonal elements equal to the elements of vector c.

2.2. Loss functions and decomposition rules

Both FKM and RKM aim at simultaneously finding an optimal partitioning of the objects and an optimal reduction of the
variables. As such, FKMaswell as RKMdecompose the datamatrixX into amembershipmatrixU, a columnwise orthonormal
loading matrix A that reveals the extent to which the variables express the clustering structure, and a centroid matrix F that
contains the scores of the cluster centroids on the Q components. To illustrate the interpretation of thesematrices, wemake
use of the following artificial example, with I = 4, J = 5, C = 2, and Q = 2:

U =

1 0
1 0
0 1
0 1

 F =
[
1.2 1.3
−0.1 0.2

]
A =


0.7 0.0
0.7 0.0
0.0 0.7
0.0 0.7
0.0 0.0

 .
The membership matrix U shows that Objects 1 and 2 belong to one cluster, and Objects 3 and 4 to another. The centroid
matrix contains the centroids of the two clusters, in a two-dimensional space. The loading matrix A shows that Variables 1
and 2 are associated to the first dimension, Variables 3 and 4 to the second, and Variable 5 does not reflect the clustering
structure at all. Such a variable is commonly denoted as a noise or masking variable. Note that, because the size of loadings
express the relative importance of the variables concerned in the clustering, FKM and RKM are related to variable selection
and weighting approaches. The essential difference is that in the latter two approaches the variables are selected and
weighted before cluster analysis, whereas FKM and RKM weight, select and cluster simultaneously.
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