Permutation reconstruction from MinMax-Betweenness constraints

Irena Rusu
L.I.N.A., UMR 6241, Université de Nantes, 2 rue de la Houssinire, BP 92208, 44322 Nantes, France

A R T I C L E INFO

Article history:

Received 15 September 2014
Received in revised form 21 December 2015
Accepted 11 March 2016
Available online 2 April 2016

Keywords:

Betweenness constraints
Permutation reconstruction
Algorithm

Abstract

In this paper, we investigate the reconstruction of permutations on $\{1,2, \ldots, n\}$ from betweenness constraints involving the minimum and the maximum element located between t and $t+1$, for all $t=1,2, \ldots, n-1$. We propose two variants of the problem (directed and undirected), and focus first on the directed version, for which we draw up general features and design a polynomial algorithm in a particular case. Then, we investigate necessary and sufficient conditions for the uniqueness of the reconstruction in both directed and undirected versions, using a parameter k whose variation controls the stringency of the betweenness constraints. We finally point out open problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The Betweenness problem is motivated by physical mapping in molecular biology and the design of circuits [2]. In this problem, we are given the set $[n]:=\{1,2, \ldots, n\}$, for some positive integer n, and a set of m betweenness constraints $(m>0)$, each represented as a triple (x, a, y) with distinct $x, a, y \in[n]$ and signifying that a is required to be between x and y, that is, either x precedes a which precedes y in the left-to-right order, or y precedes a which precedes x in the left-to-right order. The goal is to find a permutation on [n] satisfying a maximum number of betweenness constraints. In [2], it is shown that the Betweenness problem is NP-complete even in the particular case where all the constraints have to be satisfied.

In this paper we are interested in a problem related to the Betweenness problem, which also finds its motivations in molecular biology. Given $K(K \geq 2)$ permutations on the same set [n], representing K genomes given by the sequences of their genes, a common interval of these permutations is a subset of [n] whose elements are consecutive (i.e. they form an interval) on each of the K permutations. Common intervals thus represent regions of the genomes which have identical gene content, but possibly different gene order. Computing common intervals or specific subclasses of them in linear time (up to the number of output intervals) has been done by case-by-case approaches until recently, when we proposed [3] a common linear framework, whose basis is the notion of MinMax-profile. The MinMax-profile of a permutation P forgets the order of the elements in a permutation, and keeps only essential betweenness information, defined as, for each $t \in[n-1]$, the minimum and maximum value in the interval delimited by the elements t (included) and $t+1$ (included) on P (with no restriction on the relative positions of t and $t+1$ on P). When K permutations are available, their MinMax-profile is defined similarly, by considering for every $t \in[n-1]$ the global minimum and the global maximum of the K intervals delimited by t and $t+1$ on the K permutations. We show in [3] that, assuming the permutations have been renumbered such that one of them is the identity permutation, the MinMax-profile of K permutations is all we need to find common intervals, as well as all the specific subclasses of common intervals defined in the literature, in linear time (up to the number of output intervals).

[^0]Hence, the MinMax-profile is a simplified representation of a (set of) permutation(s), which is sufficient to efficiently solve a number of problems related to finding common intervals in permutations. Moreover, it may be computed in linear time [3]. However, it can be easily seen that distinct (sets of) permutations may have the same MinMax-profile, implying that the MinMax-profile captures a part, but not all, of the information in the (set of) permutation(s).

In this paper, we study the reconstruction of a permutation from a given MinMax-profile, and discuss possible generalizations.

2. Definitions and problems

In the remainder of the paper, permutations are defined on [n] and are increased with elements 0 and $n+1$, added respectively at the beginning and the end of each permutation (and assumed to be fixed). This is due to the need to make the distinction between a permutation and its reverse order permutation.

Definition 1. [3] The MinMax-profile of a permutation P on $[n] \cup\{0, n+1\}$ is the set of MinMax-constraints

$$
\operatorname{MinMax}(P)=\left\{\left.t \frac{\left[\min _{t}, \text { max }_{t}\right]}{} t+1 \right\rvert\, 0 \leq t \leq n\right\}
$$

where $\min _{t}$ ($\max _{t}$ respectively) is the minimum (maximum respectively) element in the interval delimited on P by the element t (included) and the element $t+1$ (included).

Note that the relative positions on P (i.e. which one is on the left of the other) of $t, t+1$ on the one hand, and of $\min _{t}, \max _{t}$ on the other hand are not indicated by a MinMax-profile. In the case where the relative positions of t and $t+1$ are known for all t, we use the term of directed MinMax-profile and the notations $t \xrightarrow{\left[\min _{t}, \max _{t}\right]} t+1$ when t is on the left of $t+1$, respectively $t \stackrel{\left[\min _{t}, \max _{t}\right]}{\longleftarrow} t+1$ when $t+1$ is on the left of t.

Example 1. Let $P=(0647291853$ 10) be a permutation on [9] $\cup\{0,10\}$. Then its MinMax-profile is (note that the MinMax-constraints sharing an element are concatenated):

$$
0 \underline{[0,9]} 1 \underline{[1,9]} 2 \underline{[1,9]} 3 \underline{[1,9]} 4 \underline{[1,9]} 5 \underline{[1,9]} 6 \underline{[4,7]} 7 \underline{[1,9]} 8 \underline{[1,9]} 9 \underline{[1,10]} 10
$$

whereas its directed MinMax-profile is:

Notice that the MinMax-profile and the directed MinMax-profile of any permutation obtained by arbitrarily permuting the elements $\{3,5,8\}$ are the same, illustrating that a (directed or not) MinMax-profile may correspond to several distinct permutations.

The MinMax-profile of a set \mathcal{P} of permutations is defined similarly [3], by requiring that $\min _{t}$ and $\max _{t}$ be defined over the union of the intervals delimited by t (included) and $t+1$ (included) on the K permutations in \mathscr{P}. This definition is given here for the sake of completeness, but is little used in the paper.

We distinguish between the MinMax-profile of a (set of) permutation(s) and a MinMax-profile:
Definition 2. A MinMax-profile on $[n] \cup\{0, n+1\}$ is a set of MinMax-constraints

$$
F=\left\{t \stackrel{\left[m_{t}, M_{t}\right]}{ } t+1 \mid 0 \leq t \leq n\right\}
$$

with $0 \leq m_{t} \leq t<t+1 \leq M_{t} \leq n+1$.
Again, a MinMax-profile is directed when for all $t, 0 \leq t \leq n$, the relative position of t with respect to $t+1$ is given. A MinMax-profile may be the MinMax-profile of some permutation, or of a set of permutations, but may also be the profile of no (set of) permutation(s). We limit this study to one permutation, and therefore formulate the following problem:

MinMax-Betweenness

Input: A positive integer n, a MinMax-profile F on $[n] \cup\{0, n+1\}$.
Question: Is there a permutation P on $[n] \cup\{0, n+1\}$ whose MinMax-profile is F ?
Looking for a permutation P with MinMax-constraints defined by F means satisfying a number of betweenness constraints, as well as a number of non-betweenness constraints. We use the notation $x \stackrel{a}{\longleftrightarrow} y$, with $x, y, a \in[n]$ and

https://daneshyari.com/en/article/417805

Download Persian Version:

https://daneshyari.com/article/417805

Daneshyari.com

[^0]: E-mail address: Irena.Rusu@univ-nantes.fr.
 http://dx.doi.org/10.1016/j.dam.2016.03.008 0166-218X/© 2016 Elsevier B.V. All rights reserved.

