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a b s t r a c t

A pseudo-Boolean function is a real-valued function f (x) = f (x1, x2, . . . , xn) of n binary
variables, that is, amapping from {0, 1}n toR. For a pseudo-Boolean function f (x) on {0, 1}n,
we say that g(x, y) is a quadratization of f if g(x, y) is a quadratic polynomial depending on
x and on m auxiliary binary variables y1, y2, . . . , ym such that f (x) = min{g(x, y) : y ∈

{0, 1}m} for all x ∈ {0, 1}n. By means of quadratizations, minimization of f is reduced to
minimization (over its extended set of variables) of the quadratic function g(x, y). This is of
practical interest becauseminimization of quadratic functions has been thoroughly studied
for the last few decades, and much progress has been made in solving such problems
exactly or heuristically. A related paper byAnthony et al. (2015) initiated a systematic study
of theminimumnumber of auxiliary y-variables required in a quadratization of an arbitrary
function f (a natural question, since the complexity of minimizing the quadratic function
g(x, y) depends, among other factors, on the number of binary variables). In this paper, we
determine more precisely the number of auxiliary variables required by quadratizations of
symmetric pseudo-Boolean functions f (x), those functions whose value depends only on
the Hamming weight of the input x (the number of variables equal to 1).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Quadratizations of pseudo-Boolean functions

A pseudo-Boolean function is a real-valued function f (x) = f (x1, x2, . . . , xn) of n binary variables, that is, a mapping from
{0, 1}n to R. It is well-known that every pseudo-Boolean function can be uniquely represented as a multilinear polynomial
in its variables. Nonlinear binary optimization problems, or pseudo-Boolean optimization (PBO) problems, of the form

min

f (x) : x ∈ {0, 1}n


,

where f (x) is a pseudo-Boolean function, have attracted the attention of numerous researchers, and they are notoriously
difficult, as they naturally encompass a broad variety of models such as maximum satisfiability, maximum cut, graph
coloring, simple plant location, and so on.Many approaches have been proposed for the solution of PBOproblems; the reader
may refer to [3,5,17] for general overviews. In recent years, several authors have revisited an approach initially proposed by
Rosenberg [20]. This involves reducing PBO to its quadratic case (QPBO) by relying on the following concept.
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Definition 1.1. For a pseudo-Boolean function f (x) on {0, 1}n, we say that g(x, y) is a quadratization of f if g(x, y) is a
quadratic polynomial depending on x and on m auxiliary binary variables y1, y2, . . . , ym, such that

f (x) = min

g(x, y) : y ∈ {0, 1}m


for all x ∈ {0, 1}n.

Clearly, if g(x, y) is a quadratization of f , then

min

f (x) : x ∈ {0, 1}n


= min


g(x, y) : x ∈ {0, 1}n, y ∈ {0, 1}m


,

so that the minimization of f is reduced through this transformation to the QPBO problem of minimizing g(x, y) (much like
linearization techniques reduce QPBO to a linear optimization problem in 0–1 variables; see [3,5]).

We are also interested (see [1]) in special types of quadratizations, which we call y-linear quadratizations, which contain
no products of auxiliary variables. If g(x, y) is a y-linear quadratization, then g can be written as

g(x, y) = q(x) +

m
i=1

ai(x)yi,

where q(x) is quadratic in x and each ai(x) is a linear function of x. Whenminimizing g over y, each product ai(x)yi takes the
value min{0, ai(x)}.

Rosenberg [20] has proved that every pseudo-Boolean function f (x) has a quadratization, and that a quadratization can
be efficiently computed from the polynomial expression of f . This also easily follows from our observations in Section 1.2
that every monomial has a quadratization. (It is also the case – see [1] – that any pseudo-Boolean function has a y-linear
quadratization.) Of course, quadratic PBO problems remain difficult in general, but this special class of problems has been
thoroughly studied for the last few decades, and much progress has been made in solving large instances of QPBO, either
exactly or heuristically. Quadratization has emerged in recent years as one of themost successful approaches to the solution
of very large-scale PBO problems arising in computer vision applications. (See, for instance, Boykov, Veksler and Zabih [4],
Kolmogorov and Rother [15], Kolmogorov and Zabih [16], Rother, Kolmogorov, Lempitsky and Szummer [22], Kohli, Ladický
and Torr [13], Kohli, Pawan Kumar and Torr [14], Boros and Gruber [2], Fix, Gruber, Boros and Zabih [7], Freedman and
Drineas [8], Ishikawa [10,11], Ramalingam, Russell, Ladický and Torr [19], Rother, Kohli, Feng and Jia [21], Kappes et al. [12].)

In a related paper, the present authors [1] initiated a systematic study of quadratizations of pseudo-Boolean functions.
We investigated the minimum number of auxiliary y-variables required in a quadratization. We showed, in particular, that
there are pseudo-Boolean functions of n variables for which every quadratization must involve at least Ω(2n/2) auxiliary
variables and, conversely, that O(2n/2) auxiliary variables always suffice for every function. Other authors have established
more precise upper bounds for special subclasses of pseudo-Boolean functions: (n − 1) auxiliary variables for symmetric
functions (Fix [6]),

 n−1
2


auxiliary variables for positivemonomials (Ishikawa [11]), two auxiliary variables for certain types

of submodular functions (Kohli et al. [13], Ramalingam et al. [19]), etc. In this paper, our focus is on symmetric pseudo-
Boolean functions. We introduce this class in the next section.

1.2. Symmetric functions

A symmetric pseudo-Boolean function is one in which the value of the function depends only on the weight of the input.
More precisely, a pseudo-Boolean function f : {0, 1}n → R is symmetric if there is a discrete function k : {0, 1, . . . , n} → R
such that f (x) = k(l) where l = |x| =

n
j=1 xj is the Hamming weight (number of ones) of x. In another way, f is symmetric

if it is invariant under any permutation of the coordinates {1, 2, . . . , n} of its variables. Here, we investigate the number of
auxiliary variables required in quadratizations of symmetric functions.

Example 1.2. Consider the negative monomial

−

n
i=1

xi = −x1x2 · · · xn.

This elementary symmetric pseudo-Boolean function has the following standard quadratization which requires only one
auxiliary variable (Freedman and Drineas [8]):

sn(x1, x2, . . . , xn, y) = y


n − 1 −

n
i=1

xi


.

The reason is as follows: unless all the xi are 1, then the quantity in parentheses in the expression for sn is non-negative and
the minimum value of sn is therefore 0, obtained when y = 0; and, if all xi are 1, the expression equals −y, minimized when
y = 1, giving value −1. In both cases, the minimum value of sn is the same as the value of the negative monomial. �
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