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a b s t r a c t

The minimum k-way discrepancy mdk(C) of a rectangular matrix C of nonnegative entries
is the minimum of the maxima of the within- and between-cluster discrepancies that can
be obtained by simultaneous k-clusterings (proper partitions) of its rows and columns. In
Theorem 2, irrespective of the size of C, we give the following estimate for the kth largest
nontrivial singular value of the normalized matrix: sk ≤ 9mdk(C)(k + 2 − 9k lnmdk(C)),
provided 0 < mdk(C) < 1 and k < rank(C). This statement is a certain converse of
Theorem 7 of Bolla (2014), and the proof uses some lemmas and ideas of Butler (2006),
where the k = 1 case is treated. The result naturally extends to the singular values of the
normalized adjacency matrix of a weighted undirected or directed graph.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In many applications, for example when microarrays are analyzed, our data are collected in the form of an m × n
rectangular matrix C = (cij) of nonnegative real entries. We assume that C is non-decomposable (see Definition A.3.28
of [6]), i.e., CCT (when m ≤ n) or CTC (when m > n) is irreducible. Consequently, the row-sums drow,i =

n
j=1 cij and

column-sums dcol,j =
m

i=1 cij of C are strictly positive, and the diagonal matrices Drow = diag(drow,1, . . . , drow,m) and
Dcol = diag(dcol,1, . . . , dcol,n) are regular. Without loss of generality, we also assume that

n
i=1
m

j=1 cij = 1, since neither
our main object, the normalized matrix

CD = D−1/2
row CD−1/2

col , (1)

nor the multiway discrepancies to be introduced are affected by the scaling of the entries of C. It is known that the singular
values of CD are in the [0, 1] interval. The positive ones, enumerated in non-increasing order, are the real numbers

1 = s0 > s1 ≥ · · · ≥ sr−1 > 0,

where r = rank(CD) = rank(C). Provided C is non-decomposable, 1 is a single singular value; it will be called trivial and
denoted by s0, since it corresponds to the trivial singular vector pair, which are disregarded in the clustering problems. This
is a well-known fact of correspondence analysis, for further explanation see [6,7] and Section 3.

In Theorem2,wewill estimate the kth nontrivial singular value sk of CD from abovewith a (near zero, increasing) function
of the minimum k-way discrepancy of C defined herein.
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Definition 1. The multiway discrepancy of the rectangular matrix C of nonnegative entries in the proper k-partition
R1, . . . , Rk of its rows and C1, . . . , Ck of its columns is

md(C; R1, . . . , Rk, C1, . . . , Ck) = max
1≤a,b≤k

X⊂Ra, Y⊂Cb

|c(X, Y ) − ρ(Ra, Cb)Vol(X)Vol(Y )|
√
Vol(X)Vol(Y )

, (2)

where c(X, Y ) =


i∈X


j∈Y cij is the cut between X ⊂ Ra and Y ⊂ Cb, Vol(X) =


i∈X drow,i is the volume of the row-subset
X , Vol(Y ) =


j∈Y dcol,j is the volume of the column-subset Y , whereas ρ(Ra, Cb) =

c(Ra,Cb)
Vol(Ra)Vol(Cb)

denotes the relative density
between Ra and Cb. The minimum k-way discrepancy of C itself is

mdk(C) = min
R1,...,Rk
C1,...,Ck

md(C; R1, . . . , Rk, C1, . . . , Ck).

In Section 3, we will extend this notion to an edge-weighted graph G and denote it by mdk(G). In that setup, C plays the role
of the weighted adjacency matrix (symmetric in the undirected; quadratic, but usually not symmetric in the directed case),
when the eigenvalues of the normalized adjacency matrix enter into the estimates, in their decreasing absolute values.

Note that md(C; R1, . . . , Rk, C1, . . . , Ck) of (2) is the smallest α such that for every Ra, Cb pair and for every X ⊂ Ra,
Y ⊂ Cb,

|c(X, Y ) − ρ(Ra, Cb)Vol(X)Vol(Y )| ≤ α

Vol(X)Vol(Y ) (3)

holds. Consequently, in the k-partitions of the rows and columns, giving the minimum k-way discrepancy (say, α∗) of C,
every Ra, Cb pair is α∗-regular in terms of the volumes, and α∗ is the smallest possible discrepancy that can be attained with
proper k-partitions. In the graph case, it resembles the notion of ϵ-regular pairs in the Szemerédi regularity lemma [18],
albeit with given number of vertex-clusters, which are usually not equitable; further, with volumes, instead of cardinalities.

Though it is not always called discrepancy, this notion has intensively been used since the 1970s, e.g., in [9] and [18–20].
Thomason [19,20] introduced it in the context of what he called (p, α)-jumbled graphs and proved relations between this
and similar notions, related to pseudo-random graphs. Expander graphs and the expander mixing lemma for simple regular
graphs are also closely related to this notion, e.g., Alon, Spencer, Hoory, Linial, Widgerson [3,15]. Bollobás and Nikiforov [10]
extended the notion of discrepancy to Hermitian matrices. Then they defined two types of discrepancy for graphs and
showed that their estimate is valid to both, with due regard to a theorem of Thomason [20]. They also proved that for a large
graph G, one type of these discrepancies closely approximates the discrepancy of its adjacency matrix (as a real Hermitian
matrix). In Chung, Graham, Wilson [13], the authors used the term quasi-random for simple graphs that satisfy any of some
equivalent properties, some of which closely related to discrepancy and eigenvalue separation.

Here we rather extend the notion of discrepancy used by Chung and Graham for simple graphs with given degree
sequences. In [12], the authors proved that for simple graphs ‘small’ discrepancy disc(G) (with our notation, md1(G))
is caused by eigenvalue ‘separation’: the second largest singular value (which is also the second largest absolute value
eigenvalue), s1, of the normalized adjacency matrix is ‘small’, i.e., separated from the trivial singular value s0 = 1, which is
the edge of the spectrum. More exactly, they proved disc(G) ≤ s1, hence giving some kind of generalization of the expander
mixing lemma for irregular graphs.

In the backward direction, Bollobás and Nikiforov [10] estimated the second largest singular value of an n× n Hermitian
matrix A by Cdisc(A) log n, and showed that this is best possible up to a multiplicative constant. Bilu and Linial [4] proved
the converse of the expander mixing lemma for simple regular graphs, but their key lemma, producing this statement, goes
beyond regular graphs, see Section 3.1 for details. In Alon et al. [2], the authors relaxed the notion of eigenvalue separation to
essential eigenvalue separation (by introducing a parameter for it, and requiring the separation only for the eigenvalues of
a relatively large part of the graph). Then they proved relations between the constants of this kind of eigenvalue separation
and discrepancy.

For a general rectangular matrix C of nonnegative entries, Butler [11] proved the following forward and backward
statement in the k = 1 case:

disc(C) ≤ s1 ≤ 150disc(C)(1 − 8 ln disc(C)), (4)

where disc(C) is our md1(C) and, with our notation, s1 is the largest nontrivial singular value of CD (he denoted it with σ2).
Since s1 < 1, the upper estimate makes sense for very small discrepancy, in particular, for disc(C) ≤ 8.868 × 10−5. The
lower estimate further generalizes the expander mixing lemma to rectangular matrices.

So far, the overall discrepancy has been considered in the sense, that disc(C) or disc(G) measures the largest possible
deviation between the actual and expected connectedness of arbitrary (sometimes disjoint) subsets X, Y , where under
expected the hypothesis of independence is understood (which corresponds to the rank 1 approximation of the underlying
matrix). Our purpose is, in the multicluster scenario, to find similar relations between the minimum k-way discrepancy and
the SVD of the normalized matrix, for given k. In the backward direction, in Section 2, we will prove the following.



Download English Version:

https://daneshyari.com/en/article/417875

Download Persian Version:

https://daneshyari.com/article/417875

Daneshyari.com

https://daneshyari.com/en/article/417875
https://daneshyari.com/article/417875
https://daneshyari.com

