Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Richardson's Theorem for *k*-colored kernels in strongly connected digraphs

Hortensia Galeana-Sánchez¹, Juan José Montellano-Ballesteros^{*,2}

Instituto de Matemáticas, Universidad Nacional Autónoma de México, Ciudad Universitaria 04510 México, D.F. México, Mexico

ARTICLE INFO

Article history: Received 14 January 2015 Accepted 18 September 2015 Available online 20 October 2015

Keywords: Arc-coloring Kernel Colored-kernel

ABSTRACT

A digraph D = (V, A) is said to be *m*-colored if its arcs are colored with *m* colors. An *m*-colored digraph *D* has a *k*-colored kernel if there exists $K \subseteq V$ such that (i) for every $v \in V \setminus K$ there exist a *q*-colored directed path, with $q \leq k$, from *v* to a vertex of *K*, and (ii) for every pair $\{u, v\} \subseteq K$ every directed path from *u* to *v* uses at least k + 1 colors.

Given an *m*-colored digraph *D*, the *color-class digraph* of *D*, denoted C(D), is defined as follows: the vertices of C(D) are the *m* colors of *D*, and (i, j) is an arc of C(D) if and only if there exist two consecutive arcs in *D*, namely (u, v) and (v, w), such that (u, v) has color *i* and (v, w) has color *j*.

A digraph *D* is said to be *cyclically k-partite* if there is a partition $\{V_i\}_{i=0}^{k-1}$ of its vertices in independent sets such that every arc in *D* is either a loop or a V_iV_{i+1} -arc (taken the index modulo *k*). In Galeana-Sánchez (2012) it was proved that given an *m*-colored digraph *D*, if **C**(*D*) is cyclically 2-partite then *D* has a kernel by monochromatic paths (that is a 1-colored kernel). In this paper we extend this work and prove the following: Let *D* be a strongly connected *m*-colored digraph *D* such that, for some $k \ge 1$, **C**(*D*) is a cyclically (k + 1)-partite digraph, with partition $\{\mathbf{C}_i\}_{i=0}^k$. (i) If for some part \mathbf{C}_j , no vertex of \mathbf{C}_j has a loop, then *D* has a *k*-colored kernel. (ii) For each *i*, with $0 \le i \le k$, let D_i be the subgraph of *D* induced by the set of arcs with color in \mathbf{C}_i , and for each vertex x of *D* let $N_{\mathbf{C}}^+(x)$ and $N_{\mathbf{C}}^-(x)$ be the set of colors appearing in the ex-arcs and in-arcs of x, respectively. If for some subdigraph D_j , for every vertex x of D_i we have that $N_{\mathbf{C}}^+(x) \not\subseteq N_{\mathbf{C}}^-(x)$, then *D* has a *k*-colored kernel.

As a direct consequence we obtain a proof of Richardson's Theorem in the case *D* is strongly connected, and a proof of a classical result by M. Kwaśnik (see Kwaśnik (1983)) on the existence of *k*-kernels (a *k*-kernel of a digraph D = (V, A) is a set $S \subseteq V$ such that for any $v \in V \setminus S$, $d_D(v, S) \le k - 1$ and for every pair $\{u, v\} \subseteq S$, $d_D(u, v) \ge k$) that asserts that if *D* is a strongly connected digraph such that every directed cycle has length congruent with 0 modulo *k*, then *D* has a *k*-kernel.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A digraph D = (V, A) is an *m*-colored digraph if its arcs are colored with *m*-colors. A non empty set $S \subseteq V$ is a *k*-colored absorbing set if for every vertex $u \in V \setminus S$ there exists $v \in S$ such that there is a *q*-colored directed path from *u* to *v*, with $q \leq k$.

* Corresponding author.

² Research partially supported by PAPIIT-México project IN101912.

http://dx.doi.org/10.1016/j.dam.2015.09.010 0166-218X/© 2015 Elsevier B.V. All rights reserved.

E-mail address: juancho@matem.unam.mx (J.J. Montellano-Ballesteros).

¹ Research partially supported by PAPIIT-México project IN108715 and by CONACYT project 219840.

A non empty set $S \subseteq V$ is called a *k*-colored independent set if for every pair $\{u, v\} \subseteq S$, there is no *q*-colored directed path from *u* to *v*, with $q \leq k$. A set $K \subseteq V$ is called *k*-colored kernel if *K* is a *k*-colored absorbing set and a *k*-colored independent set.

This notion was introduced in [7] and it is a natural generalization to kernels by monochromatic paths (the case of 1colored kernels) defined first in [14]. It is also a generalization of the classical notion of kernels in digraphs which has been extensively studied (see [3,5] for a recent remarkable survey on the topic). Moreover, this concept also generalizes the concept of *k*-kernel. A set $S \subseteq V$ is a *k*-kernel of *D* if it is *k*-independent (that means that for any pair $\{u, v\} \subseteq S, d_D(u, v) \ge k\}$ and (k - 1)-absorbing (that means for any $u \in V \setminus S$ there exists $v \in S$ such that $d_D(u, v) \le k - 1$). The concept of *k*-kernel was introduced by Borowiecki and Kwaśnik in [10] and in [11] Kwaśnik proved the now classical result that asserts that if *D* is a strongly connected digraph such that every directed cycle has length congruent with 0 modulo *k* then *D* has a *k*kernel. The study of 1-colored kernels in *m*-colored digraphs already has relatively extensive literature. Also the *k*-kernels in digraphs were widely studied (see for example [4,8,9,12,15,16]).

In [6] was introduced the concept of *color-class digraph* of an *m*-colored digraph *D*, denoted C(D), as follows: the vertices of C(D) are the colors represented in the arcs of *D* and (i, j) is an arc of C(D) if and only if there exist two consecutive arcs in *D*, namely (u, v) and (v, w), such that (u, v) has color *i* and (v, w) has color *j*. This concept was introduced mainly to prove that if C(D) is a bipartite digraph then *D* has a kernel by monochromatic paths. Later, in [9] was proved the following result: If *D* is a *m*-colored digraph such that C(D) has no direct cycles of odd length at least 3 then *D* has a kernel by monochromatic paths (a 1-colored kernel).

In this paper we study structural properties of the digraph C(D) that guarantee the existence of a *k*-colored kernel and we prove the following results.

Theorem 1.1. Let D = (V, A) be an strongly connected m-colored digraph, and suppose that, for some $k \ge 1$, its color-class digraph C(D) is a cyclically (k + 1)-partite digraph, with partition $\{C_i\}_{i=0}^k$. If for some j, with $0 \le j \le k$, no vertex of C_j has a loop, then D has a k-colored kernel.

Theorem 1.2. Let D = (V, A) be an strongly connected m-colored digraph, and suppose that, for some $k \ge 1$, its color-class digraph C(D) is a cyclically (k + 1)-partite digraph, with partition $\{C_i\}_{i=0}^k$. For each i, with $0 \le i \le k$, let $D_i = (V_i, A_i)$ be the minimal subdigraph of D induced by the set of arcs with color in C_i . If for some j, with $0 \le j \le k$, for every $x \in V_j$ we have that $N_C^+(x) \not\subseteq N_C^-(x)$, then D has a k-colored kernel.

These results generalize Richardson's Theorem on kernels in strongly connected digraphs and also generalizes the result of Kwaśnik on the existence of *k*-kernels in digraphs mentioned above. Also it is proved that all the hypotheses are thight for the cases when $k \ge 2$.

2. Notation

Let D = (V, A) be a digraph. A directed path $P = (x_0, x_1, ..., x_n)$ of D will be called an x_0x_n -path. Given $S_1, S_2 \subseteq V$, an arc xy of D with $x \in S_1$ and $y \in S_2$ will be called an S_1S_2 -arc, and an S_1S_2 -path is an xy-path where $x \in S_1$ and $y \in S_2$ (if $S_1 = \{x\}$ we will write xS-path and Sx-path instead of $\{x\}$ -path and $S\{x\}$ -path, respectively). Given $x \in V$, let $F^-(x) = \{yx : yx \in A\}$; $F^+(x) = \{xy : xy \in A\}$ and $F(x) = F^+(x) \cup F^-(x)$.

We will said that the digraph D = (V, A) is *m*-colored if its arcs are colored with *m* colors. A non empty set $S \subseteq V$ is a *k*-colored absorbing set if for every vertex $u \in V \setminus S$ there is a *uS*-path with at most *k* colors. A non empty set $S \subseteq V$ is called a *k*-colored independent set if for every pair $u, v \in S$, every *uv*-directed path uses at least k + 1 colors. A set $K \subseteq V$ is called *k*-colored kernel if *K* is a *k*-colored absorbing set and a *k*-colored independent set.

A digraph D = (V, A) will be called *cyclically k-partite* if there is a partition $\{V_i\}_{i=0}^{k-1}$ of V in independent sets such that every arc in D is either a loop or a V_iV_{i+1} -arc (taken the index modulo k).

Given an arc-coloring $\mathbf{C} : A \to \{1, \dots, m\}$ of D, for each $x \in V$ let $N_{\mathbf{C}}^+(x) = \{\mathbf{C}(e) : e \in F^+(x)\}$ and $N_{\mathbf{C}}^-(x) = \{\mathbf{C}(e) : e \in F^-(x)\}$.

For general concepts we refer the reader to [1,2].

3. Preliminary results

Let D = (V, A) be a strongly connected *m*-colored digraph and suppose that its color-class digraph $C(D) = (V_c, A_c)$ is a cyclically (k + 1)-partite digraph with partition $\{C_i\}_{i=0}^k$, and for each *i*, with $0 \le i \le k$, let $D_i = (V_i, A_i)$ be the minimal subdigraph of *D* such that $A_i = \{e \in A : C(e) \in C_i\}$. Observe that by definition, for every *i*, with $0 \le i \le k$, there is no isolated vertex in D_i and, for every $x \in V$, $x \in V_i$ if and only if $F(x) \cap A_i \ne \emptyset$ if and only if $N_c(x) \cap C_i \ne \emptyset$. Moreover, since no pair of vertices in C_i are adjacent, it follows that every path in D_i is monochromatic.

Lemma 3.1. Let $x \in V$.

(a) Either $N_{\mathbf{C}}^+(x) \cap N_{\mathbf{C}}^-(x) = \emptyset$ or $N_{\mathbf{C}}^+(x) \subseteq N_{\mathbf{C}}^-(x)$ or $N_{\mathbf{C}}^-(x) \subseteq N_{\mathbf{C}}^+(x)$.

(b) There is i, with $0 \le i \le k$, such that $F(x) \subseteq A_i$ if and only if $N_{\mathsf{C}}^-(x) = N_{\mathsf{C}}^+(x)$ and $|N_{\mathsf{C}}^-(x)| = 1$.

Download English Version:

https://daneshyari.com/en/article/417877

Download Persian Version:

https://daneshyari.com/article/417877

Daneshyari.com