Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Resistance distance in complete *n*-partite graphs

Severino V. Gervacio*

De La Salle University, 2401 Taft Avenue, 1004 Manila, Philippines Malayan Colleges Laguna, Pulo-Diezmo Road, Cabuyao City, 4025 Laguna, Philippines

ARTICLE INFO

Article history: Received 20 October 2012 Received in revised form 14 August 2015 Accepted 23 September 2015 Available online 17 October 2015

Keywords: Resistance Resistors in series or parallel Kirchoff's laws Complete *n*-partite graph

ABSTRACT

We may view any graph as a network of resistors each having a resistance of 1 Ω . The *resistance distance* between a pair of vertices in a graph is defined as the effective resistance between the two vertices. This function is known to be a metric on the vertex-set of any graph. The main result of this paper is an explicit expression for the resistance distance between any pair of vertices in the complete *n*-partite graph $K_{m_1,m_2,...,m_n}$.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We shall deal here with finite graphs without loops but possibly with multiple edges. The vertex-set of a graph *G* is denoted by V(G) and its edge-set is denoted by E(G).

The usual *distance* from a vertex *x* to a vertex *y* in a graph *G* is defined to be the length of any shortest path joining *x* to *y*. Thus $d: V(G) \rightarrow \mathbb{R}$ is a function that satisfies

(1) $d(x, y) \ge 0$ for all $x, y \in V(G)$,

(2) d(x, y) = 0 if and only if x = y,

(3) d(x, y) = d(y, x) for all $x, y \in V(G)$,

(4) $d(x, y) \le d(x, z) + d(z, y)$ for all $x, y, z \in V(G)$.

If *A* is any set, any function μ from $A \times A$ to the set \mathbb{R} of real numbers satisfying the four conditions above is called a *metric* on *A*.

Here we shall deal with a certain metric on the vertex-set of a graph G called resistance distance.

We associate a graph *G* with a network N(G) of unit resistors (resistor with resistance 1 Ω) in the most natural way—each edge of *G* is a unit resistor in N(G). For example, the fan F_3 and the associated network $N(F_3)$ are shown in Fig. 1.

If a source of electromotive force is connected to two nodes of the network, say at 0 and 1, current will flow into and out of the network. According to Ohm's law, if the difference in potential between two nodes is V and the current that flows into one node and out of another node is I, then V = IR, where R is the effective resistance between the two nodes. Please refer to Fig. 2.

Ohm's law easily yields formulas for the effective resistance of *resistors in series* or *resistors in parallel*. Fig. 3 shows *n* resistors connected in series.

http://dx.doi.org/10.1016/j.dam.2015.09.017 0166-218X/© 2015 Elsevier B.V. All rights reserved.

^{*} Correspondence to: De La Salle University, 2401 Taft Avenue, 1004 Manila, Philippines. *E-mail address:* severino.gervacio@dlsu.edu.ph.

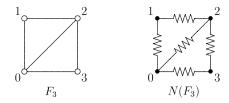


Fig. 1. The fan F_3 and the associated network of unit resistors $N(F_3)$.

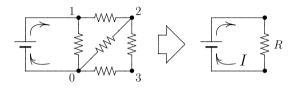


Fig. 2. An electrical circuit with effective resistance *R* between 0 and 1.

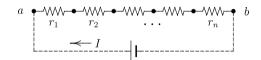


Fig. 3. Resistors in series with respect to a and b.

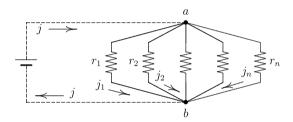


Fig. 4. Resistors in parallel with respect to *a* and *b*.

According to Ohm's law, the current that flows through a resistor in an electrical circuit is equal to the potential difference between the terminals of the resistor divided by the resistance of the resistor. If *V* is the potential difference, *i* is the current, and *R* is the resistance, then i = V/R. Here, resistor may be replaced by a network of resistors.

If *n* resistors are in series, the current that flows through each of them is the same. Referring to Fig. 3, let the potential at *a* be V_a and that at *b* be V_b . Then the potential difference between *a* and *b* is $V = V_a - V_b$ if we assume that the potential at *a* is higher. Potential is much like pressure. We can compare the situation to water flowing in a pipe through loads r_1, \ldots, r_n . There are different pressures at points between adjacent loads. The summation of all pressure differences from *a* to *b* is equal to the difference between the pressures at *a* and *b*. Going back to the original set-up of resistors, the potential difference between the terminals of r_1 is ir_1 . The summation of all potential differences is

$$i(r_1+r_2+\cdots+r_n).$$

If we view the resistors in series as one single resistor with resistance *R*, then the potential difference between *a* and *b* is *iR*. Therefore, we get the equation

$$iR = i(r_1 + r_2 + \cdots + r_n).$$

Hence, if *n* resistors with resistances of $r_1, r_2, ..., r_n$ ohms are in series, their effective resistance is

$$\Omega(a,b)=r_1+r_2+\cdots+r_n.$$

(1)

Fig. 4 shows *n* resistors in parallel. Assume that the total current entering at *a* is *j* and that the current flowing through r_i is j_i . Then $j = j_1 + j_2 + \cdots + j_n$.

If we denote by *R* the effective resistance between *a* and *b*, then j = V/R, where *V* is the potential difference between *a* and *b*. But *a* and *b* are common terminals of all the resistors. Therefore, we have

$$j = j_1 + j_2 + \dots + j_n$$

$$\frac{V}{R} = \frac{V}{r_1} + \frac{V}{r_2} + \dots + \frac{V}{r_n}.$$

Download English Version:

https://daneshyari.com/en/article/417878

Download Persian Version:

https://daneshyari.com/article/417878

Daneshyari.com