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a b s t r a c t

In the studies that have been devoted to the protein folding problem, which is one of
the great unsolved problems of science, some specific graphs, like the so-called triangular
grid graphs, have been used as a simplified lattice model. Generation and enumeration
of Hamiltonian paths and Hamiltonian circuits (compact conformations of a chain) are
needed to investigate the thermodynamics of protein folding. In this paper, we present
new characterizations of the Hamiltonian cycles in labeled triangular grid graphs, which
are graphs constructed from rectangular grids by adding a diagonal to each cell. By using
these characterizations and implementing the computational method outlined here, we
confirm the existing data, and obtain some new results that have not been published. A
new interpretation of Catalan numbers is also included.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A Hamiltonian cycle in a graph G is a cycle that visits each vertex of G exactly once. In polymer science, the study of
Hamiltonian paths (compact conformations of a chain) has been advocated as a first approximation for understanding
qualitatively the excluded-volume mechanisms at work behind protein folding. Hamiltonian cycles are a mathematical
idealization of polymer melts, too. In addition, the number of Hamiltonian cycles on a graph corresponds to the entropy
of a polymer system [8]. The entropy per site is

S
N

=
1
N

ln CN,P ,

where CN,P is the number of Hamiltonian circuits in a N-point lattice with periphery P . For example, the graph we study in
this paper has N = (n + 1) · (m + 1) vertices, if CN,P ∼ amθnm for some positive real numbers am and θm, where θm denotes
the largest eigenvalue of the adjacency matrix for a certain multidigraph that will be introduced later, then the entropy per
site is

lim
n→∞

ln CN,P

(n + 1)(m + 1)
= ln m+1


θm.

For the application of Hamiltonian chains we refer the reader to [1,4,20] and the references therein.
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Fig. 1. A Hamiltonian graph on T7,5 and its dual graphW7,5 .

Enumeration of Hamiltonian cycles and related problems in rectangular grids had been extensively studied. See, for
examples, [2,4–6,11–14,17–19,25,26]. A common thread among these papers is the introduction of an encoding method,
and the use of a transfer matrix (with the exception in [2,17]) to study the transition between the underlying structures
within the Hamiltonian cycles. See [7,22] for more applications of transfer matrices in enumerative combinatorics.

Construct a graph from a rectangular grid graph by adding a diagonal in each square (or cell) within the graph. Although
we could have named such a graph a triangulated rectangular grid, we follow [14,20] to call it a triangular grid graph. In
this paper, we study the generation and enumeration of Hamiltonian cycles in a triangular grid graph. The results in [14,20]
were obtained by encoding the vertices. We are guided by the principle that solving problems in a newway is very desirable
because, not only could it verify existing results obtained by other methods, but a new approachmay lead to properties that
are interesting from a mathematical standpoint, although they may still be unexplained from the chemical perspective.

Here is an illustration of our viewpoint. In [3] we posed a conjecture that, for each fixed m, the numbers of contractible
(as Jordan curves) and non-contractible Hamiltonian cycles on the cylinder grid graph Cm × Pn behave the same way
asymptotically as n grows. This conjecture is supported by the exact enumeration up tom = 10. This property of the cylinder
grid graph could not have been discovered by coding the vertices of the graph, but instead by coding the squares of the grid.

We shall propose two methods to encode the triangles within the triangular grid graph Tm,n in a rather natural way. By
studying the possible connection between consecutive columns within a Hamiltonian cycle, we are able to obtain, for fixed
m, the generating function of the number of Hamiltonian cycles in Tm,n for n ≥ 1. Asm grows, it is natural for the generating
functions to become lengthy and awkward. Nevertheless, a generating function provides a compact formula to record, in an
indirect way, the entire sequence under consideration. It also allows us to analyze the asymptotic behavior of the sequence.
Consequently, generating functions are more desirable than merely listing a finite number of entries within the sequence.

The algorithm presented in this article does not aspire to being the best algorithm for enumerating Hamiltonian cycles
on the triangular grid graph, in terms of computational efficiency or implementation. Those who are interested in better
efficiency for solving this problem could consult [14]. Our main goal is to solve this enumeration problem on a relatively
simple triangular grid graph, and use it as our first step towards more complicated triangular grid graphs. We aim at
discovering properties of these graphs like the one mentioned above of the cylinder grid graph.

2. Preliminaries

Startwith a rectangular grid Pm+1×Pn+1. It hasmn cells. Label its vertices (i, j), where 1 ≤ i ≤ m+1, and1 ≤ j ≤ n+1. Call
the four corners (1, 1), (1, n+1), (m+1, 1), and (m+1, n+1) the verticesM ,N , P andQ respectively. Construct the triangular
grid Tm,n by adding diagonals that join (i, j) to (i + 1, j + 1), whenever i ≤ m and j ≤ n. Each diagonal divides a square cell
into two triangular cells ui,j and di,j (for ‘‘up’’ and ‘‘down’’), above and below the diagonal respectively. See Fig. 1a. We call
themwindows of the triangular grid, and writewi,j if we are not concerned with its position (hence,wi,j could be either an
up window or a down window). In this way, instead ofmwindows in each column of the rectangular grid Pm+1 × Pn+1, we
obtain 2m windows in each column of Tm,n. We note that authors of [14] used Tn+1,m+1 to denote the same graph.

Observe that any Hamiltonian cycle encircles a connected region consisting of adjacent windows. This prompts us to
study the dual of Tm,n. The dual graph Wm,n comprised of vertices corresponding to the windows of Tm,n, and two vertices
in the dual are adjacent if the corresponding windows in Tm,n share a common edge. The dual graph W7,5 of the triangular
grid T7,5 is displayed in Fig. 1b. For the sake of clarity, the vertices in Wm,n are also labeled as ui,j and di,j, and, in general,
wi,j if we disregard its position. The interior windows enclosed by a Hamiltonian cycle on Tm,n yield a tree in Wm,n, but the
exterior windows produce a forest inWm,n.

To facilitate our discussion, we define R as the set ofwindows (called roots) in Tm,n with exactly one edge on the boundary
of the rectangular grid:

R = {di,1 | 1 ≤ i < m} ∪ {u1,j | 1 ≤ j < n} ∪ {dm,j | 1 < j ≤ n} ∪ {ui,n | 1 < i ≤ m}.

The vertices in W7,5 that represent the roots of T7,5 are marked with squares in Fig. 1b. Notice that these are the vertices
with degree 2 inWm,n.
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