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a b s t r a c t

We revisit the facial structure of the axial 3-index assignment polytope. After reviewing
known classes of facet-defining inequalities, we present a new class of valid inequalities,
and show that they define facets of this polytope. This answers a question posed by Qi
and Sun (2000). Moreover, we show that we can separate these inequalities in polynomial
time. Finally, we assess the computational relevance of the new inequalities by performing
(limited) computational experiments.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction and motivation

The axial 3-index (or 3-dimensional) assignment problem (3AP) can be described as follows. Given are three disjoint
n-sets I, J, K and a weight function w : I × J × K −→ R. The problem is to select a collection of triplesM ⊆ I × J × K such
that each element of each set appears in exactly one triple, and such that total weight of the selected triples is minimized
(or maximized). Its formulation as an Integer Linear Program (ILP) is:

min

i∈I


j∈J


k∈K

wijkxijk

s.t.

j∈J


k∈K

xijk = 1 ∀i ∈ I, (1.1)
i∈I


k∈K

xijk = 1 ∀j ∈ J, (1.2)
i∈I


j∈J

xijk = 1 ∀k ∈ K , (1.3)

xijk ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K . (1.4)

The 3AP is a straightforward generalization of the well-known (two-dimensional) assignment problem. Whereas the
latter problem is solvable by a polynomial-time algorithm, the 3AP ismore difficult: no polynomial-time algorithm is known
for the 3AP, see [17]. The 3AP however, is a very relevant problem, and has applications in many different fields of science.
In fact, the above stated formulation can be found in recent papers that deal with the statistical design of experiments. For
instance, Rassen et al. [24], Higgins [14], and Xu and Kalbfleisch [26] describe how subjects, each receiving one of three
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possible treatments, should be assembled into triples in a best possible way. A completely different application can be
found in the field of computational chemistry where so-called methyl groups need to be assigned to minimize the cost of
the resulting resonance assignment; we refer to John et al. [16] for further details. Yet another application is described in
computational biology (see Biyani et al. [7]).

Another reason for the importance of the 3AP is that it can be seen as a special case of the axial multi-index assignment
problem (mAP). In this case, instead of three disjoint n-sets, we are given m disjoint n-sets, and the problem is to find nm-
tuples such that each element is in exactly one m-tuple, while minimizing total cost. This problem is particularly relevant
in target tracking situations, which occur not only in data-association (see e.g. Poore and Gadaleta [20] and the references
contained therein), but also in particle tracking in live-cell imaging studies, see Feng et al. [12] for an example.

A consequence of these different applications is the existence of a wide range of heuristic solution methods for the 3AP.
Many of the papers above, as well as Huang and Lim [15] and Aiex et al. [1] describe heuristic procedures. And although our
work reported here is not primarily algorithmic in nature, we remark that the inequalities described here can be used in
an (exact) cutting-plane approach, and hence can also be used to establish lower bounds (see Section 5), thereby helping to
assess the quality of heuristic solutions found.

Thus, in this work we contribute to the polyhedral knowledge of the facial structure of the convex hull of the feasible
solutions to (1.1)–(1.4). First, we describe known classes of facets by adopting a geometrical point of view, i.e., we organize
the variables xijk in a three-dimensional array (a cube). This allows us to illustrate the differences between distinct classes of
inequalities (Section 2). Next, we give a new class of facet-defining inequalities, called the wall inequalities (Section 3).
We show that this class can be separated in polynomial time in Section 4. Further, we perform limited computational
experiments in order to assess the practical relevance of the wall inequalities in Section 5.

1.1. Literature

It is well-known that, as opposed to the polytope that corresponds to the two-dimensional assignment problem, not all
extreme vertices of the polytope corresponding to (1.1)–(1.4) are integral. In fact, different types of fractional vertices exist;
work on this topic is reported in Kravtsov [18]. Early work investigating the facial structure of the polytope PI is described in
Balas and Saltzman [5] and Euler [10]. They give different classes of facet-defining inequalities (see Section 2). Subsequently,
other classes of facet-defining inequalities are reported in Qi and Balas [21] (see also Qi, Balas and Gwan [22]). Separation
algorithms are discussed in Balas and Qi [4]. A nice overview of existing polyhedral results is given in Qi and Sun [23]. This
paper also contains the question: ‘‘Are there other facet classes such that the right hand sides of their defining inequalities
are 2?’’, to which we provide an (affirmative) answer here. An exact algorithm based on known valid inequalities that are
used in conjunction with Lagrangian multipliers is given in Balas and Saltzman [6].

A related polytope is the one that corresponds to the so-called planar three-index assignment problem; this is the
problem that arises when a collection of triples needs to be selected such that each pair of elements from (I × J) ∪ (I ×

K) ∪ (J × K) is selected precisely once. The facial structure of this polytope has first been studied in Euler et al. [11]. Also,
polytopes that correspond to four-index assignment problems have been studied, see Appa et al. [2]. Recent results that
unify these polyhedral results for all multi-index assignment polytopes can be found in Appa et al. [3]. We refer to [25] for
results concerning approximability of special cases of 3AP.

1.2. Preliminaries

To avoid trivialities we assume n ≥ 4. Let An denote the (0, 1) matrix corresponding to the constraints (1.1)–(1.3). Thus
An has n3 columns (one for each variable) and 3n rows (one for each constraint). Then, the 3-index assignment polytope is
the following object:

Pn
I = conv{x ∈ {0, 1}n

3
: Anx = 1},

while its linear programming (LP) relaxation is described as:

Pn
= {x ∈ Rn3

: Anx = 1, x ≥ 0}.

For reasons of convenience, we will often omit the superscript n, and use A, PI and P instead. We use R ≡ (I ∪ J ∪ K);
elements of R are called indices. We also use V ≡ I × J × K ; elements of V are called triples. Given a triple (i, j, k) ∈ V , we
refer to i, j and k as first, second, and third indices respectively.

An important object is the so-called column intersection graph corresponding to An. This graph G(V , E), has a node for
each column of An (i.e., a node for each triple) and an edge for every pair of columns that have a +1 entry in the same row.
Notice that each column of An contains three +1’s. The support of the intersection of two columns c and d is nothing else
but the number of indices that the triples c and d have in common; this number is denoted by |c ∩ d|. Thus, the edge set
E of the column intersection graph is given by E = {(c, d) : {c, d} ⊆ V , |c ∩ d| ≥ 1}, i.e., two nodes are connected iff
the corresponding triples share some index. We call two triples disjoint if the corresponding nodes are not connected in G.
Clearly, cliques (a complete subgraph of G) and odd cycles (a cycle consisting of an odd number of vertices in G) are relevant
structures. Indeed, it is clear that when given a set of variables that correspond to nodes that form a clique in G, at most one
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