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a b s t r a c t

A biclique of a graph G is a maximal induced complete bipartite subgraph of G. The
biclique graph of G denoted by KB(G), is the intersection graph of all the bicliques of G.
The biclique graph can be thought as an operator between the class of all graphs. The
iterated biclique graph of G denoted by KBk(G), is the graph obtained by applying the
biclique operator k successive times to G. The associated problem is deciding whether an
input graph converges, diverges or is periodic under the biclique operator when k grows
to infinity. All possible behaviors were characterized recently and an O(n4) algorithm for
deciding the behavior of any graph under the biclique operator was also given. In this work
we prove new structural results of biclique graphs. In particular, we prove that every false-
twin-free graph with at least 13 vertices is divergent. These results lead to a linear time
algorithm to solve the same problem.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Intersection graphs of certain special subgraphs of a general graph have been studied extensively. For example, line
graphs (intersection graphs of the edges of a graph), interval graphs (intersection of intervals of the real line), clique graphs
(intersection of cliques of a graph), etc. [4,5,8,12,13,27,29].

The clique graph of G denoted by K(G), is the intersection graph of the family of all maximal cliques of G. Clique graphs
were introduced byHamelink in [19] and characterized by Roberts and Spencer in [35]. The computational complexity of the
recognition problem of clique graphs had been open for more than 40 years. In [1] they proved that clique graph recognition
problem is NP-complete.

The clique graph can be thought as an operator between the class of all graphs. The iterated clique graph K k(G) is the
graph obtained by applying the clique operator k successive times (K 0(G) = G). Then K is called clique operator and it was
introduced by Hedetniemi and Slater in [20]. Much work has been done on the scope of the clique operator looking at the
different possible behaviors. The associated problem is deciding whether an input graph converges, diverges or is periodic
under the clique operator when k grows to infinity. In general it is not clear that the problem is decidable. However, partial
characterizations have been given for convergent, divergent and periodic graphs restricted to some classes of graphs. Some
of these lead to polynomial time recognition algorithms. For the clique-Helly graph class, graphs which converge to the
trivial graph have been characterized in [3]. Cographs, P4-tidy graphs, and circular-arc graphs are examples of classes where
the different behaviors are characterized [7,30]. Divergent graphs were also considered. For example in [22], families of
divergent graphs are shown. Periodic graphs were studied in [8,26]. In particular it is proved that for every integer i, there
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Fig. 1. Graphs K5 , C5 , butterfly, gem and rocket , respectively.

exist periodic graphs with period i and also convergent graphs which converge in i steps. More results about iterated clique
graph can be found in [11,23–25,32,33].

A biclique is a maximal bipartite complete induced subgraph. Bicliques have applications in various fields, for
example biology: protein–protein interaction networks [6], social networks: web community discovery [21], genetics [2],
medicine [31], information theory [18], etc. More applications (including some of these) can be found in [28].

The biclique graph of a graph G denoted by KB(G), is the intersection graph of the family of all maximal bicliques of G. It
was defined and characterized in [16]. However no polynomial time algorithm is known for recognizing biclique graphs. As
for clique graphs, the biclique graph construction can be viewed as an operator between the class of graphs.

The iterated biclique graph KBk(G) is the graph obtained by applying to G the biclique operator KBk times iteratively. It
was introduced in [14] and all possible behaviors were characterized. It was proven that a graph G is either divergent or
convergent but it is never periodic (with period bigger than 1). In addition, general characterizations for convergent and
divergent graphs were given. These results were based on the fact that if a graph G contains a clique of size at least 5, then
KB(G) or KB2(G) contains a clique of larger size. Therefore, in that caseG diverges. Similarly ifG contains the gem or the rocket
graphs as an induced subgraph, then KB(G) contains a clique of size 5, and again G diverges. Otherwise it was shown that
after removing false-twin vertices of KB(G), the resulting graph is a clique on at most 4 vertices, in which case G converges.
Moreover, it was proved that if a graph G converges, it converges to the graphs K1 or K3, and it does so in at most 3 steps.
These characterizations leaded to anO(n4) time algorithm for recognizing convergent or divergent graphs under the biclique
operator.

In this workwe show new results that lead to a linear time algorithm to solve the same problem.We study conditions for
a graph to contain a K5, a C5, a butterfly, a gem or a rocket (see Fig. 1) as induced subgraphs so that we can decide divergence
(since K5 ⊆ KB(C5), KB(butterfly), KB(gem), KB(rocket)). First we prove that if G has at least 7 bicliques then it diverges.
Then, we show that every false-twin-free graph with at least 13 vertices has at least 7 bicliques, and therefore diverges.
Since adding false-twins to a graph does not change its KB behavior, then the linear algorithm is based on the deletion of
false-twin vertices of the graph and looking at the size of the remaining graph.

It isworth tomention that these results are indeed very different from the ones known for the clique operator, forwhich it
is still an open problem to know the computational complexity of deciding the behavior of a graph under the clique operator.

This work is the full version of a previous extended abstract published in [15]. It is organized as follows. In Section 2 the
notation is given. Section 3 contains some preliminary results that we will use later. In Section 4 we prove that any graph
with at least 7 bicliques diverges, and that every graphwith at least 13 vertices with no false-twins vertices contains at least
7 bicliques. This leads to a linear time algorithm to decide convergence or divergence under the biclique operator.

2. Notation and terminology

Along the paper we restrict to undirected simple graphs. Let G = (V , E) be a graph with vertex set V (G) and edge set
E(G), and let n = |V (G)| and m = |E(G)|. A subgraph G′ of G is a graph G′

= (V ′, E ′) where V ′
⊆ V and E ′

⊆ E. A subgraph
G′

= (V ′, E ′) of G is inducedwhen for every pair of vertices v, w ∈ G′, vw ∈ E ′ if and only if vw ∈ E. A graph G is H-free if it
does not contain H as an induced subgraph. A graph G = (V , E) is bipartitewhen V = U ∪ W , U ∩ W = ∅ and E ⊆ U × W .
Say that G is a complete graph when every possible edge belongs to E. A complete graph of n vertices is denoted Kn. A clique
of G is a maximal complete induced subgraph while a biclique is a maximal bipartite complete induced subgraph of G. The
open neighborhood of a vertex v ∈ V (G) denoted N(v), is the set of vertices adjacent to v while the closed neighborhood of v
denoted byN[v], isN(v)∪{v}. Two vertices u, v are false-twins ifN(u) = N(v). A vertex v ∈ V (G) is universal if it is adjacent
to all of the other vertices in V (G). A path (cycle) of k vertices, denoted by Pk (Ck), is a set of vertices v1v2...vk ∈ V (G) such
that vi ≠ vj for all 1 ≤ i ≠ j ≤ k and vi is adjacent to vi+1 for all 1 ≤ i ≤ k−1 (and v1 is adjacent to vk). A graph is connected
if there exists a path between each pair of vertices. We assume that all the graphs of this paper are connected.

A rocket is a complete graph with 4 vertices and a vertex adjacent to two of them. A butterfly is the graph obtained by
joining two copies of the K3 with a common vertex.

Given a family of setsH , the intersection graph ofH is a graph that has themembers ofH as vertices and there is an edge
between two sets E, F ∈ H when E and F have non-empty intersection.

A graph G is an intersection graph if there exists a family of sets H such that G is the intersection graph of H . We remark
that any graph is an intersection graph [37].

A family of sets H is mutually intersecting if every pair of sets E, F ∈ H have non-empty intersection.
Let F be any graph operator. Given a graph G, the iterated graph under the operator F is defined iteratively as follows:

F 0(G) = G and for k ≥ 1, F k(G) = F k−1(F(G)). We say that a graph G diverges under the operator F whenever limk→∞
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