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a b s t r a c t

Diagnosability plays an important role in measuring the reliability of interconnection
networks. Conditional faulty set is a special faulty set that does not contain all of neighbors
of any vertex in a network. The conditional diagnosability is a metric that can give the
maximum cardinality of the conditional faulty sets that the system is guaranteed to
identify. This paper shows that the conditional diagnosability of the bubble-sort star graph
BSn under theMMmodel is 6n−15 for n ≥ 6 and under the PMCmodel is 8n−21 for n ≥ 5.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of technology, amultiprocessor systemmay contain thousands of processors. As a significant
increase in the number of processors, fault diagnosis of interconnection networks has become increasingly important.
Diagnosis of a system is a process of identifying faulty nodes with fault-free nodes. The maximum number of faulty nodes
that a system is guaranteed to identify is called the diagnosability of the system. The diagnosability of many interconnection
networks has been explored. For example, see [5,8–10,14,16–24].

For the purpose of self-diagnosis of a system, some different models have been proposed. Among the proposed models,
the MMmodel in [17] and the PMCmodel in [18] are widely used. The MMmodel is also called comparison diagnosis model,
in which, the diagnosis is performed by sending the same input from a processor (node) to each pair of its distinct neighbors,
and then comparing their outcomes. Sengupta and Dahbura [19] suggested the MM* model which is a modification of the
MM model. In the MM* model, every processor must test another two processors if it is adjacent to them. Only a fault-
free processor can guarantee reliable outcome, and the output are identical if the two processors which are adjacent to it
are fault-free and distinct otherwise. The MM model was adopted in [7,20]. In the PMC model, every processor can test
the processor that is adjacent to it and only the fault-free processor can guarantee reliable outcome. The PMC model was
adopted in [2,14,22].

Given a system, it is not possible to determine whether some processor u is fault-free or not, if all the neighbors of
processor u are faulty. In this case, Lai et al. [14] proposed the conditional faulty set, which is a special faulty set that does
not contain all of neighbors of any vertex in a network. The conditional diagnosability is a metric that can give the maximum
number of conditional faulty set that the system is guaranteed to identify. Many researchers have studied the conditional
diagnosability of different networks under different models. The conditional diagnosability of a k-Ary n-Cubes Q k

n is 6n − 5
for n ≥ 4 and k ≥ 4 under the MM model [11] and 8n − 7 for n ≥ 4 and k ≥ 4 under the PMC model [4]. The conditional
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diagnosability of the n-dimensional hypercube Qn is 3n − 5 for n ≥ 5 under the MM* model [13] and 4n − 7 under the
PMCmodel [14]. The conditional diagnosability of folded hypercube FQn [12] is 3n− 2 for n ≥ 5 under the MM*model. The
conditional diagnosability of star graph Sn [21] is n − 1 for n ≥ 4 under the MM model and 8n − 21 for n ≥ 5 under the
PMC model [3]. The conditional diagnosability of Bubble-sort graph Bn [22] is 4n − 11 for n ≥ 4 under the PMC model.

Clearly, the star graph owns many attractive properties except the embeddability as well as the Bubble-sort graph is
simple and possesses some desirable features except the long diameter. So we may expect that the Bubble-sort star graph
will combine the advantages of both graphs (see [1,6]). The remainder of this paper is organized as follows: Section 2
introduces some necessary definitions and notations. In Section 3, we demonstrate the conditional diagnosability of the
Bubble-sort star graphs under the MM Model. In Section 4, we demonstrate the conditional diagnosability of the Bubble-
sort star graphs under the PMC Model.

2. Preliminaries

The topology of an interconnection network is often modeled as an undirected graph, where vertex and edge represent
the processor and the link between twoprocessors, respectively. Throughout this paper,we only consider simple, undirected
and connected graphs. Let G = (V , E) be a graph with vertex set V = {v1, v2, . . . , vn}. For vi ∈ V , the degree of vi, written
by di or d(vi), is the number of edges incident with vi. Let ∆(G) and δ(G) denote the maximum and minimum degree of G,
respectively. If ∆(G) = δ(G), then the graph is regular. The set of neighbors of a vertex vi in G is denoted by NG(vi). For a
subset S of V , G[S] is a subgraph of G induced by S. The neighborhood set of S in G is defined as NG(S) = (∪u∈S NG(u)) − S.
We will use G − S to denote the subgraph G[V (G) − S]. The minimum size of a vertex set S ⊆ V (G) that the graph G − S
is disconnected or has only one vertex, denoted by κ(G), is the connectivity of G. The symmetric difference of F1 ⊆ V (G) and
F2 ⊆ V (G) is defined as the set F1△F2 = (F1 − F2) ∪ (F2 − F1). Let cn(G) be the maximum number of common neighbors
between any two vertices in G.

In the MM model, a self-diagnosable system of a graph G is often represented by a multigraph M(V , L), where V and L
are the vertex set of G and the labeled edge set, respectively. (u, v; w) is defined as a labeled edge, if vertices u and v are
adjacent to w, which implies that u and v are being compared by w. Since a pair of vertices may be compared by different
vertices, M is a multigraph. For (u, v; w) ∈ L, we use π((u, v; w)) to denote the result of comparing vertices u and v by
w. For w being fault-free, if both u and v are fault-free, then π((u, v; w)) = 1; otherwise π((u, v; w)) = 0. If w is faulty,
π((u, v; w)) may be either 1 or 0, which implies the result is unreliable. The collection of all comparison results inM(V , L)
defined as a function π : L → {0, 1}, is the syndrome of the diagnosis.

In the PMC model, a self-diagnosable system of a graph G is often represented by a digraph D(V , L), where V and L are
the vertex set of G and the order edge set, respectively. (u, v) is defined as an order edge, if vertex u is adjacent to v, which
implies that u can test v. For (u, v) ∈ L, we use π((u, v)) to denote the result of testing vertex v by u. For u being fault-free,
if v is fault-free, then π((u, v)) = 1; otherwise π((u, v)) = 0. If u is faulty, π((u, v))may be either 1 or 0, which implies the
result is unreliable. The collection of all comparison results in D(V , L) defined as a function π : L → {0, 1}, is the syndrome
of the diagnosis. This study assumes that each node u tests the other whenever they are adjacent to it.

A subset F ⊆ V (G) is compatible with a syndrome π if the syndrome can arise the circumstance that all vertices in F
are faulty while all vertices in V (G) − F are fault-free. Since a faulty comparator w may return an unreliable result, a faulty
set F may produce different syndromes. Let π(F) be the set of all syndromes that is compatible with F . A system is said to
be diagnosable if for every syndrome π , there is a unique F ⊆ V (G) that is compatible with π . It is called t-diagnosable if
the system is diagnosable as long as the size of faulty set does not exceed t . The maximum number of t that the graph G is
t-diagnosable is called the diagnosability of G, written as t(G).

A faulty set F ⊆ V (G) is called a conditional faulty set if it does not contain all of neighbors of any vertex in G. Two distinct
faulty subsets F1, F2 ⊆ V (G) are distinguishable if π(F1) ∩ π(F2) = ∅; otherwise, they are said to be indistinguishable.
A system G is conditional t-diagnosable if every two distinct conditional faulty subsets F1, F2 ⊆ V (G) with |F1|, |F2| ≤ t ,
are distinguishable. The conditional diagnosability, denoted by tc(G), is the maximum number of t such that the graph G is
conditional t-diagnosable. Then tc(G) ≥ t(G) [11].

Let [a, b] = {x : x is an integer with a ≤ x ≤ b}, where a and b are integers. We denote ‘‘◦’’ an operation such that
u = v ◦ (i, j), for any u = x1x2 · · · xi · · · xj · · · xn, v = x1x2 · · · xj · · · xi · · · xn, where xi ∈ {1, 2, . . . , n} and xi ≠ xj (i ≠

j, and i, j ∈ [1, n]). Now we give the definition of the bubble-sort star graph.

Definition 2.1 ([6]). The bubble-sort star graph BSn has n! vertices, each of which has the form u = x1x2 · · · xn, where
xi ∈ {1, 2, . . . , n} and xi ≠ xj for i ≠ j, where i, j ∈ [1, n]. Any two vertices u and v of V (BSn) are adjacent if and only if
v = u ◦ (1, i) for i ∈ [2, n], or v = u ◦ (i − 1, i) for i ∈ [3, n].

Clearly, BSn is (2n−3)-regular and vertex symmetry. Moreover, it is Hamiltonian and bipartite. We can partition BSn into
n subgraphs BS1n , BS

2
n , . . . , BS

n
n , where every vertex u = x1x2 · · · xn ∈ V (BS in) has a fixed integer i in the last position xn for

i ∈ [1, n]. For any vertex u ∈ V (BS in), we denote u+
= u ◦ (1, n), u−

= u ◦ (n − 1, n), N+
u = {u+, u−

}. We let Ei,j(BSn) =

EBSn(V (BS in), V (BS jn)) for simplicity, where EBSn(V (BS in), V (BS jn)) denotes the edge set of BSn with one end in V (BS in) and other
end in V (BS jn). It is obvious that BS in is isomorphic to BSn−1 for i ∈ [1, n]. Fig. 1 illustrates BS2, BS3 and BS4, respectively.
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