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matic number of G, x;(G), is defined as the smallest k such that G admits an r-dynamic
k-coloring. In this paper, first we introduce an upper bound for x,(G) in terms of r, chro-
matic number, maximum degree and minimum degree. Then, motivated by a conjecture of
Montgomery (2001) stating that for a d-regular graph G, x2(G) — x(G) < 2, we prove two

Ic(fl}::nzzdéc number upper bounds for x, — x onregular graphs. Our first upper bound [5.437 log d+2.721] im-

r-dynamic chromatic number proves a result of Alishahi (2011). Also, our second upper bound shows that Montgomery’s

Forest transversal conjecture is implied by the existence of a x (G)-coloring for any regular graph G, such that
any two vertices whose neighbors are unicolored in this coloring, have no common neigh-
bor.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite, simple, undirected graphs G = (V(G), E(G)), on the vertex set V(G) and the edge set E(G). For a
vertex v of G, the set of neighbors of v is denoted by N¢(v) (or N(v) if there is no confusion) and the degree of v, i.e., [Ng(v)],
is denoted by deg(v). The minimum and maximum of |[Ng(v)| over v € V(G) are denoted by §(G) and A(G), respectively.
Also, for B C V(G), the set of neighbors of B in G is denoted by N¢(B) (or N(B) if there is no confusion), and the subgraph of
G induced on B is denoted by G[B]. The second power of G, denoted by G2, is a graph on the vertex set V(G), in which two
distinct vertices are adjacent if and only if their distance in G is at most 2. In the sequel, log stands for the natural logarithm
function and e denotes its base.

Let r be a positive integer. An r-dynamic k-coloring of a graph G is a proper vertex k-coloring such that every vertex v
receives at least min{r, deg(v)} colors in its neighbors. The minimum k for which a graph G admits an r-dynamic k-coloring is
called the r-dynamic chromatic number of G, and is denoted by x; (G). The r-dynamic chromatic number was first introduced
by B. Montgomery [ 10] and the case r = 2 is usually called the dynamic chromatic number (e.g. [1-3,5,7,8]).

Our main motivation for this study and the subsequent results is the following conjecture of B. Montgomery.

Conjecture 1 ([10]). For every regular graph G, we have x,(G) — x(G) < 2.

In what follows we first concentrate on upper bounds of x;,(G) in general. In this regard we prove a basic result that will
be used later, stating that r x (G) is an upper bound for ¥, (G), when e((§A — 8 + 1)(r — 1) + 1)(1 — 1/r)? < 1.1t should be
noted that Jahanbekam et al. [6] independently (and using the same method) proved this result for regular graphs. Moreover,
using a greedy coloring procedure, they proved that x,(G) < rA(G) + 1.

Next, applying the probabilistic method, we establish our main result in the general case as an upper bound for x;,(G) in
terms of x (G), A(G), 8(G), and r, as follows.
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Theorem 1. Let r be a positive integer with 2 < r < §/log(2er(A? 4 1)). Then we have,

¥ (G) < x(G) + (@ —1) (e? log(2er (A + 1))} )

The second part of our contribution is obtained by a focus on the case r = 2. In this regard one should first note the
following classical result for general graphs.

Theorem A ([10]). For any graph G, we have x,(G) < A(G) + 3.

It is also instructive to note that if A(G) > 3, then x2(G) < A(G) + 1 (see [8]).

On the other hand, for relations between x,(G) and x (G), and in particular on upper bounds for x,(G) — x (G), we know
that the difference can be arbitrarily large on the whole class of simple graphs [10], while M. Alishahi has proved that if
x(G) > 4then x2(G) < x(G) + y(G), where y (G) is the domination number of G (see [3]).

Note that by Theorem 1 the role of % is settled on the upper bound. Hence, as a generalization of Conjecture 1, one may
ask whether there exists a constant ¢y such that the above mentioned chromatic difference is controlled by co(A(G)/6(G))
on the whole class of simple graphs.

In this regard, the upper bound of Theorem 1 for r = 2 and § > 2 log(4e(A? + 1)) shows that

x2(G) — x(G) < [e(A/8) log(4e(A* + 1))].

Our next result indicates that for r = 2 this upper bound can be improved by removing the factor 4.

Given a coloring c of a graph G, a vertex v of G is said to be bad if deg(v) > 2 and only one of the colors of ¢ appears on
the neighbors of v. Let B, be the set of all bad vertices with respect to the coloring c of G. Note that every coloring c of G
with B, = & is a dynamic coloring. Moreover, in [3], it is shown that if x (G) > 4, then for every k > x (G), there is a proper
k-coloring c such that the set of bad vertices, B, is an independent set.

Considering the above mentioned fact, and an efficient estimation of the probability of some events, we can prove the
following theorem.

Theorem 2. For any graph G we have, x2(G) < x(G) + (e% log(e(A% + 1))].

Motivated by Conjecture 1 we further specialize to the case of r = 2 and regular graphs for which we know that,

Theorem B ([2]). If Gis a d-regular graph, then x,(G) < x(G) + 14.06logd + 1.

Also, M. Alishahi in [3] proves that for any d-regular graph G with no induced C4, we have x5 (G) < x(G) + 2[4logd + 1].
Note that the following corollary of Theorem 2 shows that x2(G) < x(G) + [5.437 logd 4 2.721] when d > 3, which is an
improvement of the above mentioned result.

Corollary 1. If Gis a d-regular graph, then x»(G) < x (G) + [elog(e(d? + 1))].

As an epilogue to our second result recall that for a regular graph G, x2(G) < x(G) + 2log, @(G) + 3 in which «(G) is the
independence number of G (see [5]).

It is shown in [3] that for any d-regular graph G with x(G) > 4, we have x2(G) < x(G) + «(G?). In our next result
we generalize the above setup to a more flexible upper bound for x,(G) — x(G) in terms of the chromatic number of a
graph strongly dependent on G?, where the proof uses forest transversals in G (for more on independent transversal and its
generalization see [11]).

Theorem 3. Let G be a d-regular graph and c be a k-coloring of G. If B. is the set of all bad vertices for coloring c, then
%2(G) < min{k + 2x (G*[B.] \ E(G)) : cis a k-coloring of G}.

First, note that as a direct consequence of Theorem 3 we have
x2(G) < k+2x(G*[B:] \ E(G))

for any d-regular graph G and any k-coloring c of G. On the other hand, if one can color a d-regular graph G with x (G) colors
such that any two bad vertices of G in this coloring have no common neighbor, then

x2(G) — x(G) < 2.

Clearly, this provides a possible approach to prove Conjecture 1.
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