Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

On *r*-dynamic chromatic number of graphs

Ali Taherkhani

Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

ARTICLE INFO

Article history: Received 30 June 2014 Received in revised form 9 March 2015 Accepted 20 July 2015 Available online 10 August 2015

Keywords: Chromatic number *r*-dynamic chromatic number Forest transversal

ABSTRACT

An *r*-dynamic *k*-coloring of a graph *G* is a proper vertex *k*-coloring of *G* such that the neighbors of any vertex *v* receive at least min{*r*, deg(*v*)} different colors. The *r*-dynamic chromatic number of *G*, $\chi_r(G)$, is defined as the smallest *k* such that *G* admits an *r*-dynamic *k*-coloring. In this paper, first we introduce an upper bound for $\chi_r(G)$ in terms of *r*, chromatic number, maximum degree and minimum degree. Then, motivated by a conjecture of Montgomery (2001) stating that for a *d*-regular graph *G*, $\chi_2(G) - \chi(G) \leq 2$, we prove two upper bounds for $\chi_2 - \chi$ on regular graphs. Our first upper bound [5.437 log *d*+2.721] improves a result of Alishahi (2011). Also, our second upper bound shows that Montgomery's conjecture is implied by the existence of a $\chi(G)$ -coloring for any regular graph *G*, such that any two vertices whose neighbors are unicolored in this coloring, have no common neighbor.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite, simple, undirected graphs G = (V(G), E(G)), on the vertex set V(G) and the edge set E(G). For a vertex v of G, the set of neighbors of v is denoted by $N_G(v)$ (or N(v) if there is no confusion) and the degree of v, i.e., $|N_G(v)|$, is denoted by $\deg(v)$. The minimum and maximum of $|N_G(v)|$ over $v \in V(G)$ are denoted by $\delta(G)$ and $\Delta(G)$, respectively. Also, for $B \subseteq V(G)$, the set of neighbors of B in G is denoted by $N_G(B)$ (or N(B) if there is no confusion), and the subgraph of G induced on B is denoted by G[B]. The second power of G, denoted by G^2 , is a graph on the vertex set V(G), in which two distinct vertices are adjacent if and only if their distance in G is at most 2. In the sequel, log stands for the natural logarithm function and e denotes its base.

Let *r* be a positive integer. An *r*-dynamic *k*-coloring of a graph *G* is a proper vertex *k*-coloring such that every vertex *v* receives at least min{*r*, deg(*v*)} colors in its neighbors. The minimum *k* for which a graph *G* admits an *r*-dynamic *k*-coloring is called the *r*-dynamic chromatic number of *G*, and is denoted by $\chi_r(G)$. The *r*-dynamic chromatic number was first introduced by B. Montgomery [10] and the case r = 2 is usually called the dynamic chromatic number (e.g. [1–3,5,7,8]).

Our main motivation for this study and the subsequent results is the following conjecture of B. Montgomery.

Conjecture 1 ([10]). For every regular graph *G*, we have $\chi_2(G) - \chi(G) \le 2$.

In what follows we first concentrate on upper bounds of $\chi_r(G)$ in general. In this regard we prove a basic result that will be used later, stating that $r\chi(G)$ is an upper bound for $\chi_r(G)$, when $e((\delta \Delta - \delta + 1)(r - 1) + 1)(1 - 1/r)^{\delta} \le 1$. It should be noted that Jahanbekam et al. [6] independently (and using the same method) proved this result for regular graphs. Moreover, using a greedy coloring procedure, they proved that $\chi_r(G) \le r\Delta(G) + 1$.

Next, applying the probabilistic method, we establish our main result in the general case as an upper bound for $\chi_r(G)$ in terms of $\chi(G)$, $\Delta(G)$, $\delta(G)$, and r, as follows.

http://dx.doi.org/10.1016/j.dam.2015.07.019 0166-218X/© 2015 Elsevier B.V. All rights reserved.

E-mail address: ali.taherkhani@iasbs.ac.ir.

Theorem 1. Let *r* be a positive integer with $2 \le r \le \delta / \log(2er(\Delta^2 + 1))$. Then we have,

$$\chi_r(G) \leq \chi(G) + (r-1) \left[e \frac{\Delta}{\delta} \log(2er(\Delta^2 + 1)) \right].$$

The second part of our contribution is obtained by a focus on the case r = 2. In this regard one should first note the following classical result for general graphs.

Theorem A ([10]). For any graph *G*, we have $\chi_2(G) \leq \Delta(G) + 3$.

It is also instructive to note that if $\Delta(G) \ge 3$, then $\chi_2(G) \le \Delta(G) + 1$ (see [8]).

On the other hand, for relations between $\chi_2(G)$ and $\chi(G)$, and in particular on upper bounds for $\chi_2(G) - \chi(G)$, we know that the difference can be arbitrarily large on the whole class of simple graphs [10], while M. Alishahi has proved that if $\chi(G) \ge 4$ then $\chi_2(G) \le \chi(G) + \gamma(G)$, where $\gamma(G)$ is the domination number of *G* (see [3]).

Note that by Theorem 1 the role of $\frac{\Delta(G)}{\delta(G)}$ is settled on the upper bound. Hence, as a generalization of Conjecture 1, one may ask whether there exists a constant c_0 such that the above mentioned chromatic difference is controlled by $c_0(\Delta(G)/\delta(G))$ on the whole class of simple graphs.

In this regard, the upper bound of Theorem 1 for r = 2 and $\delta \ge 2\log(4e(\Delta^2 + 1))$ shows that

$$\chi_2(G) - \chi(G) \le \lceil e(\Delta/\delta) \log(4e(\Delta^2 + 1)) \rceil.$$

Our next result indicates that for r = 2 this upper bound can be improved by removing the factor 4.

Given a coloring *c* of a graph *G*, a vertex *v* of *G* is said to be *bad* if $deg(v) \ge 2$ and only one of the colors of *c* appears on the neighbors of *v*. Let B_c be the set of all bad vertices with respect to the coloring *c* of *G*. Note that every coloring *c* of *G* with $B_c = \emptyset$ is a dynamic coloring. Moreover, in [3], it is shown that if $\chi(G) \ge 4$, then for every $k \ge \chi(G)$, there is a proper *k*-coloring *c* such that the set of bad vertices, B_c , is an independent set.

Considering the above mentioned fact, and an efficient estimation of the probability of some events, we can prove the following theorem.

Theorem 2. For any graph *G* we have, $\chi_2(G) \leq \chi(G) + \lceil e^{\frac{\Lambda}{s}} \log(e(\Delta^2 + 1)) \rceil$.

Motivated by Conjecture 1 we further specialize to the case of r = 2 and regular graphs for which we know that,

Theorem B ([2]). If G is a d-regular graph, then $\chi_2(G) \leq \chi(G) + 14.06 \log d + 1$.

Also, M. Alishahi in [3] proves that for any *d*-regular graph *G* with no induced C_4 , we have $\chi_2(G) \le \chi(G) + 2\lceil 4 \log d + 1 \rceil$. Note that the following corollary of Theorem 2 shows that $\chi_2(G) \le \chi(G) + \lceil 5.437 \log d + 2.721 \rceil$ when $d \ge 3$, which is an improvement of the above mentioned result.

Corollary 1. If G is a d-regular graph, then $\chi_2(G) \le \chi(G) + \lceil e \log(e(d^2 + 1)) \rceil$.

As an epilogue to our second result recall that for a regular graph G, $\chi_2(G) \leq \chi(G) + 2 \log_2 \alpha(G) + 3$ in which $\alpha(G)$ is the independence number of G (see [5]).

It is shown in [3] that for any *d*-regular graph *G* with $\chi(G) \ge 4$, we have $\chi_2(G) \le \chi(G) + \alpha(G^2)$. In our next result we generalize the above setup to a more flexible upper bound for $\chi_2(G) - \chi(G)$ in terms of the chromatic number of a graph strongly dependent on G^2 , where the proof uses forest transversals in *G* (for more on independent transversal and its generalization see [11]).

Theorem 3. Let G be a d-regular graph and c be a k-coloring of G. If B_c is the set of all bad vertices for coloring c, then

$$\chi_2(G) \le \min\{k + 2\chi(G^2[B_c] \setminus E(G)) : c \text{ is a } k\text{-coloring of } G\}.$$

First, note that as a direct consequence of Theorem 3 we have

 $\chi_2(G) \le k + 2\chi(G^2[B_c] \setminus E(G))$

for any *d*-regular graph *G* and any *k*-coloring *c* of *G*. On the other hand, if one can color a *d*-regular graph *G* with $\chi(G)$ colors such that any two bad vertices of *G* in this coloring have no common neighbor, then

 $\chi_2(G) - \chi(G) \le 2.$

Clearly, this provides a possible approach to prove Conjecture 1.

Download English Version:

https://daneshyari.com/en/article/417934

Download Persian Version:

https://daneshyari.com/article/417934

Daneshyari.com