
A lightweight approach to component-level exception
mechanism for robust android apps

Kwanghoon Choi a,1, Byeong-Mo Chang b,n,2

a Computer & Telecommunication Engineering Division, Yonsei University, Wonju, Gangwon-Do 26493, Republic of Korea
b Department of Computer Science, Sookmyung Women's University, Seoul 04310, Republic of Korea

a r t i c l e i n f o

Article history:
Received 1 June 2015
Received in revised form
26 August 2015
Accepted 26 August 2015
Available online 10 September 2015

Keywords:
Android
Java
Exception
Component
Semantics

a b s t r a c t

Recent researches have reported that Android programs are vulnerable to unexpected
exceptions. One reason is that the current design of Android platform solely depends on
Java exception mechanism, which is unaware of the component-based structure of
Android programs. This paper proposes a component-level exception mechanism for
programmers to build robust Android programs with. With the mechanism, they can
define an intra-component handler for each component to recover from exceptions, and
they can propagate uncaught exceptions to caller component along the reverse of com-
ponent activation flow. Theoretically, we have formalized an Android semantics with
exceptions to prove the robustness property of the mechanism. In practice, we have
implemented the mechanismwith a domain-specific library that extends existing Android
components. This lightweight approach does not demand the change of the Android
platform. In our experiment with Android benchmark programs, the library is found to
catch a number of runtime exceptions that would otherwise get the programs terminated
abnormally. We also measure the overhead of using the library to show that it is very
small. Our proposal is a new mechanism for defending Android programs from unex-
pected exceptions.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Exception handling in Java is an important feature to improve the robustness of Java programs. For example, Fig. 1 shows
a simplified Java program that may throw one of two exceptions, NoSuchOperator and ArithmeticException (divide by
zero), when users try to do a calculation with an unsupported operator or with zero as a divisor. Once the calc method
throws such an exception, it is propagated along the call stack to a caller, the main method, where it is handled by the
catch block.

Many Android programs are written in Java with Android APIs, presumably using exception handling. Android is Google's
open-source platform for mobile devices, and it provides the APIs (Application Programming Interfaces) necessary to
develop applications for the platform in Java (http://developer.android.com). An Android program consists of components

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cl

Computer Languages, Systems & Structures

http://dx.doi.org/10.1016/j.cl.2015.08.010
1477-8424/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: kwanghoon.choi@yonsei.ac.kr (K. Choi), chang@sookmyung.ac.kr (B.-M. Chang).
1 This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of

Education (NRF-2014R1A1A2053446).
2 This research was supported by the Sookmyung Women's University (Research Grant 1-1403-0212).

Computer Languages, Systems & Structures 44 (2015) 283–298

http://developer.android.com
www.sciencedirect.com/science/journal/14778424
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2015.08.010
http://dx.doi.org/10.1016/j.cl.2015.08.010
http://dx.doi.org/10.1016/j.cl.2015.08.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.08.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.08.010&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.08.010&domain=pdf
mailto:kwanghoon.choi@yonsei.ac.kr
mailto:chang@sookmyung.ac.kr
http://dx.doi.org/10.1016/j.cl.2015.08.010
http://dx.doi.org/10.1016/j.cl.2015.08.010

such as activities, services, broadcast receivers and content providers. Android components communicate with another by
sending messages called Intents. For example, an activity can start other activities by sending Intents to Android platform,
which invokes methods of callee activities.

How vulnerable Android components are due to Intents have been reported by experiments in [1–4]. With Intent
fuzzing, they generated random and semi-valid intents to test how components react to these exceptional conditions,
focusing on uncaught exceptions that result in the crashes. One experiment by [2] measured the number of failed com-
ponents for various types of components, reporting that 29(8.7%) out of total 332 activities crash with generated semi-valid
intents. The distribution of exception types are also measured to understand how components fail due to uncaught
exceptions, showing that NullPointerException makes up the largest share of all the exceptions, and other exceptions
like ClassNotFoundException and IllegalArgumentException are next significant ones.

We have also found by examining source code of programs that Android programs can be very vulnerable to exceptions.
We examined 9 programs and found that 41 activities (51%) out of total 80 activities have no exception handlers like try-
catch, as will be shown in our experiment later. Activities without exception handlers cannot handle any thrown exceptions,
and so result in the crashes when any exceptions are thrown.

From these observations, we can be sure that it is necessary for developing more robust Android programs to handle
uncaught exceptions from components. Currently, programmers only resort to the conventional Java exceptions: the try-
catch construct to defend statements and the thread-level uncaught exception handler interface (Thread.UncaughtEx-
ceptionHandler) to catch exceptions escaping from a thread. They are still crucial for Android programs, but they only
address too fine-grained level in statements or too coarse-grained level in a thread. They are not immediately useful for
addressing defending Android components.

Our design of component-level exception mechanism naturally follows that of the conventional Java exceptions of
separating error-handling code from “regular” code and of propagating exceptions up the call stack. First of all, our
mechanism is designed for each Android component to have a designated “catch” facility to defend itself from any
(unexpected) uncaught exceptions thrown by the “regular” code of the component. This feature will allow programmers to
focus more on the main flow of components, never missing any exceptions attempting to escape the components. Second,
our mechanism is designed to support the propagation of exceptions following up a component activation stack. This facility
will make components more resilient even by catching exceptions propagated from other components. Particularly, many
components in Android programs have a relationship on “who activates whom”, which is very similar to a caller–callee
relationship in method invocation. Also, Android platform already has an activity stack internally, which is the same as the
call stack of method invocation, to maintain the who-activates-whom relationship.

In this paper, we propose a mechanism for component-level exception handling and propagation in Android programs,
which can be used to make them more robust by defending themselves from unexpected events. We take a lightweight
approach by providing new component APIs (e.g., ExceptionActivity class), which extends the existing Android components
(e.g., Activity class) with the component-level exception mechanism. No Android platform needs to be modified to use our
approach. Programmers can utilize component-level exception handling and propagation by writing components with the
new extended APIs. This use of the exception mechanism preserves the structure of classes and methods in original pro-
grams. Our approach is also flexible in that programmers can take full control of deciding which components handle what
exceptions and how they are recovered.

Following an overview of Android programs and our motivation in Section 2, we present our idea of the Android
component-level exception mechanism in Section 3. We give a theoretical account on the mechanism by an Android
semantics with exceptions to prove the robustness of the mechanism in Section 4. We also perform experiments in practice
to show that Android programs can be more robust with the new API in Section 5. We count how many exceptions are
caught with the new API. We also measure the marginal cost of the mechanism by changed lines of code, increased binary
size, and startup time due to the adoption of the mechanism. Finally, after discussing related work in Section 6, we conclude
in Section 7.

c l a s s C a l c u l a t o r {
vo id main () {

i n t a , b , r ; char op ;
/ / read a , op , and b
t r y {

r = c a l c (a , op , b) ;
/ / d i s p l a y t h e r e s u l t

}
catch (NoSuchOperator e) {

/ / Not suppo r t t h e o p e r a t o r
}

}

i n t c a l c (i n t a , char op , i n t b) {
i f (op== ’+’) re turn a+b ;
e l s e i f (op== ’-’) re turn a−b ;
e l s e i f (op== ’*’) re turn a*b ;
e l s e i f (op== ’/’) re turn a / b ;
e l s e
throw new NoSuchOperator () ;

}
}

Fig. 1. A Java program using exceptions.

K. Choi, B.-M. Chang / Computer Languages, Systems & Structures 44 (2015) 283–298284

Download English Version:

https://daneshyari.com/en/article/417940

Download Persian Version:

https://daneshyari.com/article/417940

Daneshyari.com

https://daneshyari.com/en/article/417940
https://daneshyari.com/article/417940
https://daneshyari.com

