
The intelligent memory allocator selector

Onur Ülgen a,n, Mutlu Avci b

a Cukurova University, Faculty of Engineering and Architecture, Computer Engineering Department, Balcali, Adana, Turkey
b Cukurova University, Faculty of Engineering and Architecture, Biomedical Engineering Department, Balcali, Adana, Turkey

a r t i c l e i n f o

Article history:
Received 22 June 2015
Received in revised form
17 August 2015
Accepted 16 September 2015
Available online 3 October 2015

Keywords:
Memory fragmentation
Memory allocator
Garbage collection
Virtual machine

a b s t r a c t

Memory fragmentation is a serious obstacle preventing efficient memory usage. Garbage
collectors may solve the problem; however, they cause serious performance impact,
memory and energy consumption. Therefore, various memory allocators have been
developed. Software developers must test memory allocators, and find an efficient one for
their programs. Instead of this cumbersome method, we propose a novel approach for
dynamically deciding the best memory allocator for every application. The proposed
solution tests each process with various memory allocators. After the testing, it selects an
efficient memory allocator according to condition of operating system (OS). If OS runs out
of memory, then it selects the most memory efficient allocator for new processes. If most
of the CPU power was occupied, then it selects the fastest allocator. Otherwise, the
balanced allocator is selected. According to test results, the proposed solution offers up to
58% less fragmented memory, and 90% faster memory operations. In average of 107
processes, it offers 7.1672.53% less fragmented memory, and 1.7977.32% faster memory
operations. The test results also prove the proposed approach is unbeatable by any
memory allocator. In conclusion, the proposed method is a dynamic and efficient solution
to the memory fragmentation problem.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Memory fragmentation is a serious obstacle preventing efficient usage of memory. It appears in time while program is allo-
cating and deallocating memory, shown in Fig. 1. In the last situation of the figure, there are 9 blocks of free memory; however,
even 4 blocks of memory cannot be allocated due to fragmentation.

Memory fragmentation can be split into two types: external and internal fragmentation. From operating system per-
spective, external fragmentation describes fragmentation between processes. Hence, internal fragmentation occurs inside of
the processes.

In modern computers, external fragmentation was solved utilizing paging, detailed in Section 2.1 [1–3]. Internal fragmentation
was solved utilizing memory compaction of garbage collectors (Section 2.2). However, due to serious performance impact, memory
and energy consumption [4–6], it is an inefficient solution. Even further, some garbage collectors do not support memory com-
paction; thus, they do not prevent memory fragmentation, such as Android KitKat and predecessors [7]. Therefore, internal
fragmentation is still a challenging problem in this area.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cl

Computer Languages, Systems & Structures

http://dx.doi.org/10.1016/j.cl.2015.09.003
1477-8424/& 2015 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: oulgen@cu.edu.tr (O. Ülgen), mavci@cu.edu.tr (M. Avci).
URL: http://www.onurulgen.com (O. Ülgen).

Computer Languages, Systems & Structures 44 (2015) 342–354

www.sciencedirect.com/science/journal/14778424
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2015.09.003
http://dx.doi.org/10.1016/j.cl.2015.09.003
http://dx.doi.org/10.1016/j.cl.2015.09.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.09.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.09.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.09.003&domain=pdf
mailto:oulgen@cu.edu.tr
http://www.onurulgen.com
mailto:mavci@cu.edu.tr
http://dx.doi.org/10.1016/j.cl.2015.09.003
http://dx.doi.org/10.1016/j.cl.2015.09.003


For avoiding disadvantages of garbage collectors, memory allocators were developed for general purpose [8–12], multi-
threaded processes [13], network applications [14], object oriented programming languages [15,16], video-on-demand
servers [17], etc.

Modern operating systems assign a default memory allocator to every process. If this memory allocator was insufficient
for the application then software developers should determine and add the most efficient and fastest memory management
algorithm for their applications [18]. However, if the developer had no knowledge about memory allocators then the
application would lose performance and memory. Instead of forcing developer to select a memory allocator, operating
system should determine memory management algorithm for each process to accomplish the best performance and
efficiency.

In this work, we propose an intelligent memory allocator selector (IMAS) that dynamically decides the best memory
allocator for each process. The IMAS tests each process separately with various memory allocators. After the testing, it
selects an efficient memory allocator. It also adopts to the operating system (OS) conditions. If OS runs out of memory then
the IMAS selects the most memory efficient memory allocator for new processes. If processes consume most of the CPU
power then it selects the fastest memory allocator. Otherwise, the balanced memory allocator is selected.

The IMAS has a test system, which logs CPU performance values and memory fragmentation ratios. These test results are
used to select efficient memory allocator for processes. Therefore, they can be used for comparison between memory
allocators and the IMAS. Tests have been done in a regular personal computer during its daily activity. 107 processes have
been fully tested during our tests. According to test results, the IMAS provides up to 58% less fragmented memory than
default memory allocator of OS. In average of 107 processes, the IMAS is 7.1672.53% memory efficient. For CPU perfor-
mance, the IMAS is up to 90% faster; and in average, it is 1.7977.32% faster.

Test results prove our claims, the IMAS minimizes memory fragmentation by selecting an efficient memory allocator for
each process. Therefore, memory management is done in faster and more efficient way.

Whole memory is free at the beginning

Processes allocated the memory

Some processes deallocated their areas

Fig. 1. Memory fragmentation.

Kernel Memory

Stack
.
.
.

Shared Library

.

.

.
Heap

Unintialised Variables

Initialised Variables

Program Code

0

W
ho

le
 M

em
or

yShared Library
Shared Library

Fig. 2. Process memory image.

O. Ülgen, M. Avci / Computer Languages, Systems & Structures 44 (2015) 342–354 343



Download English Version:

https://daneshyari.com/en/article/417943

Download Persian Version:

https://daneshyari.com/article/417943

Daneshyari.com

https://daneshyari.com/en/article/417943
https://daneshyari.com/article/417943
https://daneshyari.com

