Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Bounds on the differentiating-total domination number of a tree

ABSTRACT

Wenjie Ning^{*}, Mei Lu, Jia Guo

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

ARTICLE INFO

Article history: Received 10 October 2014 Received in revised form 17 June 2015 Accepted 21 June 2015 Available online 15 July 2015

Keywords: Tree Locating-total dominating set Locating-total domination number Differentiating-total dominating set Differentiating-total domination number

1. Introduction

The concept of a locating-total dominating set and a differentiating-total dominating set in a graph was introduced in [3,6]. The problem of placing monitoring devices in a system such that every site (including the monitors themselves) in the system is adjacent to a monitor can be modeled by total domination in graphs. Applications where it is also important that if there is a problem in a device, its location can be uniquely identified by the set of monitors, can be modeled by a combination of total domination and locating in graphs. In this paper, we consider differentiating-total domination in trees.

This paper will follow the notation and terminology defined in [4,5]. Let G = (V, E) be a graph of order *n* with no isolated vertex. For a vertex v in G, the set $N(v) = \{u \in V \mid uv \in E\}$ is called the open neighborhood of v and $N[v] = N(v) \cup \{v\}$ is the closed neighborhood of v. For a subset $S \subseteq V$, $N(S) = \bigcup_{v \in S} N(v)$ is the open neighborhood of S and $N[S] = N(S) \cup S$ is the closed neighborhood of S. A subset S of V is called a dominating set (DS) of G if N[S] = V and S is a total dominating set (TDS) of G if N(S) = V. A TDS S is a locating-total dominating set (LTDS) if for every pair of distinct vertices u and v in V - S, $N(u) \cap S \neq N(v) \cap S$, and S is a differentiating-total dominating set (DTDS) if for every pair of distinct vertices u and v in V, $N[u] \cap S \neq N[v] \cap S$. The minimum cardinality of a LTDS (or DTDS) of G is the *locating-total domination number* (or differentiating-total domination number) of G and denoted by $\gamma_t^L(G)$ (or $\gamma_t^D(G)$). A LTDS (or DTDS) of cardinality $\gamma_t^L(G)$ (or $\gamma_t^{D}(G)$ is called a $\gamma_t^{L}(G)$ -set (or $\gamma_t^{D}(G)$ -set).

Given a graph G = (V, E), the degree of v in G, denoted by d(v) or $d_G(v)$, is equal to |N(v)|. A vertex of degree one is a leaf and the edge incident with a leaf is known as a pendent edge. A vertex adjacent to a leaf is a support vertex and a support vertex adjacent to at least two leaves is a strong support vertex. We will use L(G) and S(G) to denote the set of leaves and support vertices of G, respectively. For arbitrary two vertices u and v in G, the distance between u and v, denoted by d(u, v), is the number of edges in a shortest path joining u and v. If there is no such path, then we define $d(u, v) = \infty$. The diameter

* Corresponding author. Tel.: +86 18810306220.

http://dx.doi.org/10.1016/j.dam.2015.06.029 0166-218X/© 2015 Elsevier B.V. All rights reserved.

Given a graph G = (V, E) with no isolated vertex, a subset S of V is called a total dominating

set of G if every vertex in V is adjacent to a vertex in S. A total dominating set S is called

a differentiating-total dominating set if for every pair of distinct vertices u and v in V,

 $N[u] \cap S \neq N[v] \cap S$. The minimum cardinality of a differentiating-total dominating

set of *G* is the differentiating-total domination number of *G*, denoted by $\gamma_t^D(G)$. We show

© 2015 Elsevier B.V. All rights reserved.

E-mail addresses: nwj0501@mail.ustc.edu.cn (W. Ning), mlu@math.tsinghua.edu.cn (M. Lu), guojia199011@163.com (J. Guo).

of G is the maximum distance among all pairs of vertices of G, denoted by diam(G). If A and B are two disjoint subsets of V, then $[A, B] = \{uv \in E(G) | u \in A, v \in B\}$. For a subset S of V, we use G[S] to denote the subgraph induced by S. Let G and H be two disjoint graphs. The disjoint union of G and H, denoted by G + H, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. If $G_1 \cong \cdots \cong G_k$, we write kG_1 for $G_1 + \cdots + G_k$.

A path of order *n* is P_n . A star of order *n* is denoted by S_n . A tree is called a *double star* S(p, q), if it is obtained from S_{p+2} and S_{q+1} by identifying a leaf of S_{p+2} with the center of S_{q+1} , where $p, q \ge 1$. Given a graph G = (V, E), the corona of G, cor(G), is a graph obtained from G by adding a pendent edge to each vertex of G.

Differentiating-total domination in trees has been studied in [1,6]. In this paper, we continue the study of it. We show that, for a tree *T* of order $n \ge 3$ and diameter *d* having *l* leaves and *s* support vertices, $\frac{3(d+1)}{5} \le \gamma_t^D(T) \le n - \frac{2(d-2)}{5}$ and $\frac{6}{11}(n+1+\frac{l}{2}-s) \le \gamma_t^D(T) \le \frac{3(n+1)}{5}$. Moreover, we characterize the extremal trees achieving these bounds.

2. Lower bounds on the differentiating-total domination number of a tree

The differentiating-total domination number of P_n was given in [6].

Theorem 1 ([6]). For $n \ge 3$,

$$\gamma_t^D(P_n) = \begin{cases} \left\lceil \frac{3n}{5} \right\rceil & \text{if } n \neq 3 \pmod{5}, \\ \left\lceil \frac{3n}{5} \right\rceil + 1 & \text{if } n \equiv 3 \pmod{5}. \end{cases}$$

The following result gives a lower bound of $\gamma_t^D(T)$ involving diameter. Suppose *n* and *d* are two positive integers with $d + 1 \equiv 0 \pmod{5}$ and $d + 1 \le n \le \frac{6(d+1)}{5}$. Let ξ_1 be the family of trees of order *n* and diameter *d* that can be obtained from a path $P = x_1 - x_2 - \ldots - x_{d+1}$ of length *d* by adding n - d - 1 isolated vertices such that each new vertex is adjacent only to vertices in $\bigcup_{i=1}^{(d+1)/5} \{x_{5i-2}\}$ and the resulting tree has no strong support vertices.

Theorem 2. Suppose T is a tree of order $n \ge 3$ and diameter d, then $\gamma_t^D(T) \ge \frac{3(d+1)}{5}$ and the equality holds if and only if $T \in \xi_1$.

Proof. We proceed by induction on the order *n*. If n = 3, then $T = P_3$ and $\gamma_t^D(T) = 3 > \frac{3(d+1)}{5}$ by Theorem 1.

Assume that every tree T' of order $3 \le n' < n$ and diameter d' satisfies $\gamma_t^D(T') \ge \frac{3(d'+1)}{5}$. Let T be a tree of order n > 3

and diameter *d*. If *T* is a path, then $\gamma_t^D(T) \ge \frac{3n}{5} = \frac{3(d+1)}{5}$ by Theorem 1. Now suppose *T* is not a path. Let $P = x_1 - x_2 - \dots - x_{d+1}$ be a path of length *d* in *T* and $v \in V(P)$ such that $d(v) \ge 3$. Let *u* be a vertex in V(T) - V(P) such that d(v, u) is maximum. Then $u \in L(T)$. Let $N(u) = \{w\}$ and T' = T - u. Then $n' = n - 1 \ge 3$ and d' = d. By the inductive hypothesis, $\gamma_t^D(T') \ge \frac{3(d'+1)}{5} = \frac{3(d+1)}{5}$.

Let *D* be a $\gamma_t^D(T)$ -set of *T*. Since $w \in S(T)$, $w \in D$. Let T_w be the component in T[D] containing w. If $u \notin V(T_w)$, then *D* is a DTDS of T'. Now assume $u \in V(T_w)$. If $|V(T_w)| \ge 4$, then $D \setminus \{u\}$ is a DTDS of T'. So we assume $|V(T_w)| = 3$.

If d(w) = 2, then $V(T_w) = N[w] = \{u, w, z\}$ for some vertex z. Let $t \in N(z) \setminus \{w\} \neq \emptyset$, then $t \notin D$ and $(D \setminus \{u\}) \cup \{t\}$ is a DTDS of T'. If $d(w) \ge 3$, then there is a vertex $t \in N(w) - D$. Thus, $(D \setminus \{u\}) \cup \{t\}$ is a DTDS of T'. In each case, we have

 $|D| \ge \gamma_t^D(T')$. This completes the proof of $\gamma_t^D(T) \ge \frac{3(d+1)}{5}$. If $T \in \xi_1$, it is easy to verify that $D = \bigcup_{i=1}^{(d+1)/5} \{x_{5i-3}, x_{5i-2}, x_{5i-1}\}$ is a DTDS of T. Thus, $\gamma_t^D(T) \le \frac{3(d+1)}{5}$. Since $\gamma_t^D(T) \ge \frac{3(d+1)}{5}$, we have $\gamma_t^D(T) = \frac{3(d+1)}{5}$.

Conversely, suppose *T* is a tree of order $n \ge 3$ and diameter *d* satisfying $\gamma_t^D(T) = \frac{3(d+1)}{5}$. Then $d + 1 \equiv 0 \pmod{5}$. Let $P = x_1 - x_2 - \ldots - x_{d+1}$ be a path of length *d* in *T* and *D* a $\gamma_t^D(T)$ -set of *T*. For $i = 1, 2, \ldots, \frac{d+1}{5}$, let T_i be the component of $T - \bigcup_{j=1}^{(d-4)/5} \{x_{5j}x_{5j+1}\}$ containing the vertex x_{5i} and $P_i = x_{5i-4} - x_{5i-3} - x_{5i-2} - x_{5i-1} - x_{5i}$ be a subpath of P (we define $\bigcup_{i=1}^{(d-4)/5} \{x_{5i}x_{5i+1}\} := \emptyset \text{ if } d = 4\}. \text{ Since } D \text{ is a DTDS of } T, |D \cap V(T_i)| \ge 3. \text{ Thus, } |D| \ge 3(d+1)/5. \text{ As } |D| = \gamma_t^D(T) = 3(d+1)/5, \text{ As } |D| =$ we obtain $|D \cap V(T_i)| = 3$ for $i = 1, 2, ..., \frac{d+1}{5}$. We will show that $D \cap V(T_i) = \{x_{5i-3}, x_{5i-2}, x_{5i-1}\}$ for $i = 1, 2, ..., \frac{d+1}{5}$.

Fact 1.
$$|D \cap V(P_i)| = 3$$
 for $i = 1, 2, ..., \frac{d+1}{5}$

Proof of Fact 1. Suppose there is an $i_0 \in \{1, 2, ..., \frac{d+1}{5}\}$ such that $|D \cap V(P_{i_0})| = 1$. Assume $D \cap V(P_{i_0}) = \{x\}$. Since every component of T[D] has at least three vertices and $|V(T_{i_0}) \cap D| = 3$, there are two vertices y and z in $(V(T_{i_0}) - V(P_{i_0})) \cap D$ with either $y \in N(x)$ and $z \in N(y)$, or $\{y, z\} \subseteq N(x)$. If $x \in \{x_{5i_0-4}, x_{5i_0-3}\}$ (resp. $x \in \{x_{5i_0-1}, x_{5i_0}\}$), then $N(x_{5i_0-1}) \cap D = \emptyset$ (resp. $N(x_{5i_0-3}) \cap D = \emptyset$), a contradiction. If $x = x_{5i_0-2}$, then $N[x_{5i_0-3}] \cap D = N[x_{5i_0-1}] \cap D = \{x_{5i_0-2}\}$, a contradiction. Thus, $|D \cap V(P_i)| \ge 2$ for $i = 1, 2, \ldots, \frac{d+1}{5}$.

Download English Version:

https://daneshyari.com/en/article/417988

Download Persian Version:

https://daneshyari.com/article/417988

Daneshyari.com