Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/dam)

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Bounds on the differentiating-total domination number of a tree

Wenjie Ning [∗](#page-0-0) , Mei Lu, Jia Guo

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

a r t i c l e i n f o

Article history: Received 10 October 2014 Received in revised form 17 June 2015 Accepted 21 June 2015 Available online 15 July 2015

Keywords: Tree Locating-total dominating set Locating-total domination number Differentiating-total dominating set Differentiating-total domination number

1. Introduction

The concept of a locating-total dominating set and a differentiating-total dominating set in a graph was introduced in [\[3,](#page--1-0)[6\]](#page--1-1). The problem of placing monitoring devices in a system such that every site (including the monitors themselves) in the system is adjacent to a monitor can be modeled by total domination in graphs. Applications where it is also important that if there is a problem in a device, its location can be uniquely identified by the set of monitors, can be modeled by a combination of total domination and locating in graphs. In this paper, we consider differentiating-total domination in trees.

This paper will follow the notation and terminology defined in [\[4](#page--1-2)[,5\]](#page--1-3). Let $G = (V, E)$ be a graph of order *n* with no isolated vertex. For a vertex v in *G*, the set $N(v) = \{u \in V \mid uv \in E\}$ is called the *open neighborhood* of v and $N[v] = N(v) \cup \{v\}$ is the *closed neighborhood* of *v*. For a subset $S \subseteq V$, $N(S) = \bigcup_{v \in S} N(v)$ is the open neighborhood of *S* and $N[S] = N(S) \cup S$ is the *closed neighborhood* of *S*. A subset *S* of *V* is called a *dominating set* (DS) of *G* if *N*[*S*] = *V* and *S* is a *total dominating set* (TDS) of *G* if *N*(*S*) = *V*. A TDS *S* is a *locating-total dominating set* (LTDS) if for every pair of distinct vertices *u* and v in *V* − *S*, *N*(*u*) ∩ *S* \neq *N*(*v*) ∩ *S*, and *S* is a *differentiating-total dominating set* (DTDS) if for every pair of distinct vertices *u* and *v* in *V*, *N*[*u*] ∩ *S* \neq *N*[*v*] ∩ *S*. The minimum cardinality of a LTDS (or DTDS) of *G* is the *locating-total domination number* (or *differentiating-total domination number*) of *G* and denoted by $\gamma_t^L(G)$ (or $\gamma_t^D(G)$). A LTDS (or DTDS) of cardinality $\gamma_t^L(G)$ (or $\gamma_t^D(G)$) is called a $\gamma_t^L(G)$ -set (or $\gamma_t^D(G)$ -set).

Given a graph $G = (V, E)$, the *degree* of v in G, denoted by $d(v)$ or $d_G(v)$, is equal to $|N(v)|$. A vertex of degree one is a *leaf* and the edge incident with a leaf is known as a *pendent edge*. A vertex adjacent to a leaf is a *support vertex* and a support vertex adjacent to at least two leaves is a *strong support vertex*. We will use *L*(*G*) and *S*(*G*) to denote the set of leaves and support vertices of *G*, respectively. For arbitrary two vertices *u* and v in *G*, the *distance* between *u* and v, denoted by *d*(*u*, v), is the number of edges in a shortest path joining *u* and *v*. If there is no such path, then we define $d(u, v) = \infty$. The *diameter*

<http://dx.doi.org/10.1016/j.dam.2015.06.029> 0166-218X/© 2015 Elsevier B.V. All rights reserved.

Given a graph $G = (V, E)$ with no isolated vertex, a subset S of V is called a total dominating set of *G* if every vertex in *V* is adjacent to a vertex in *S*. A total dominating set *S* is called a differentiating-total dominating set if for every pair of distinct vertices u and v in V , *N*[*u*] \cap *S* \neq *N*[*v*] \cap *S*. The minimum cardinality of a differentiating-total dominating set of *G* is the differentiating-total domination number of *G*, denoted by $\gamma_t^D(G)$. We show that, for a tree T of order $n \ge 3$ and diameter d having l leaves and s support vertices,
 $\frac{3(d+1)}{5} \le \gamma_t^D(T) \le n - \frac{2(d-2)}{5}$ and $\frac{6}{11}(n+1+\frac{1}{2}-s) \le \gamma_t^D(T) \le \frac{3(n+1)}{5}$. Moreover, we characterize the extremal trees achieving these bounds.

© 2015 Elsevier B.V. All rights reserved.

[∗] Corresponding author. Tel.: +86 18810306220.

E-mail addresses: nwj0501@mail.ustc.edu.cn (W. Ning), mlu@math.tsinghua.edu.cn (M. Lu), guojia199011@163.com (J. Guo).

of *G* is the maximum distance among all pairs of vertices of *G*, denoted by *diam*(*G*). If *A* and *B* are two disjoint subsets of *V*, then $[A, B] = \{uv \in E(G) | u \in A, v \in B\}$. For a subset S of V, we use G[S] to denote the subgraph induced by S. Let G and H be two disjoint graphs. The *disjoint union* of *G* and *H*, denoted by $G + H$, is the graph with vertex set $V(G) \cup V(H)$ and edge $\text{Set } E(G) \cup E(H)$. If $G_1 \cong \cdots \cong G_k$, we write kG_1 for $G_1 + \cdots + G_k$.

A path of order *n* is P_n . A star of order *n* is denoted by S_n . A tree is called a *double star* $S(p, q)$, if it is obtained from S_{p+2} and S_{q+1} by identifying a leaf of S_{p+2} with the center of S_{q+1} , where $p, q \ge 1$. Given a graph $G = (V, E)$, the *corona* of *G*, *cor(G)*, is a graph obtained from *G* by adding a pendent edge to each vertex of *G*.

Differentiating-total domination in trees has been studied in [\[1](#page--1-4)[,6\]](#page--1-1). In this paper, we continue the study of it. We show that, for a tree *T* of order $n \ge 3$ and diameter *d* having *l* leaves and *s* support vertices, $\frac{3(d+1)}{5} \le \gamma_t^D(T) \le n - \frac{2(d-2)}{5}$ and $\frac{6}{11}(n+1+\frac{1}{2}-s) \leq \gamma_t^D(T) \leq \frac{3(n+l)}{5}$. Moreover, we characterize the extremal trees achieving these bounds.

2. Lower bounds on the differentiating-total domination number of a tree

The differentiating-total domination number of P_n was given in [\[6\]](#page--1-1).

Theorem 1 (*[\[6\]](#page--1-1)*)**.** *For* $n \geq 3$ *,*

$$
\gamma_t^D(P_n) = \begin{cases} \begin{bmatrix} \frac{3n}{5} \\ \frac{3n}{5} \end{bmatrix} & \text{if } n \neq 3 \pmod{5}, \\ \begin{bmatrix} \frac{3n}{5} \\ \frac{3n}{5} \end{bmatrix} + 1 & \text{if } n \equiv 3 \pmod{5}. \end{cases}
$$

The following result gives a lower bound of $\gamma_t^D(T)$ involving diameter. Suppose *n* and *d* are two positive integers with $d+1 \equiv 0 \pmod{5}$ and $d+1 \leq n \leq \frac{6(d+1)}{5}$. Let ξ_1 be the family of trees of order *n* and diameter *d* that can be obtained from a path $P = x_1-x_2- \ldots -x_{d+1}$ of length *d* by adding $n-d-1$ isolated vertices such that each new vertex is adjacent only to vertices in $\bigcup_{i=1}^{(d+1)/5} \{x_{5i-2}\}\$ and the resulting tree has no strong support vertices.

Theorem 2. Suppose T is a tree of order $n\geq 3$ and diameter d, then $\gamma_t^D(T)\geq\frac{3(d+1)}{5}$ and the equality holds if and only if $T\in \xi_1.$

Proof. We proceed by induction on the order *n*. If $n = 3$, then $T = P_3$ and $\gamma_t^D(T) = 3 > \frac{3(d+1)}{5}$ by [Theorem 1.](#page-1-0)

Assume that every tree *T'* of order 3 $\leq n' < n$ and diameter *d'* satisfies $\gamma_t^D(T') \geq \frac{3(d'+1)}{5}$. Let *T* be a tree of order $n > 3$ and diameter *d*. If *T* is a path, then $\gamma_t^D(T) \ge \frac{3n}{5} = \frac{3(d+1)}{5}$ by [Theorem 1.](#page-1-0)

Now suppose *T* is not a path. Let $P = x_1 - x_2 - \ldots - x_{d+1}$ be a path of length *d* in *T* and $v \in V(P)$ such that $d(v) \ge 3$. Let *u* be a vertex in $V(T) - V(P)$ such that $d(v, u)$ is maximum. Then $u \in L(T)$. Let $N(u) = \{w\}$ and $T' = T - u$. Then $n' = n - 1 \geq 3$ and $d' = d$. By the inductive hypothesis, $\gamma_t^D(T') \ge \frac{3(d+1)}{5} = \frac{3(d+1)}{5}$.

Let D be a $\gamma_t^D(T)$ -set of T. Since $w \in S(T)$, $w \in D$. Let T_w be the component in $T[D]$ containing w . If $u \notin V(T_w)$, then D is a DTDS of *T'*. Now assume $u \in V(T_w)$. If $|V(T_w)| \geq 4$, then $D \setminus \{u\}$ is a DTDS of *T'*. So we assume $|V(T_w)| = 3$.

If $d(w) = 2$, then $V(T_w) = N[w] = \{u, w, z\}$ for some vertex *z*. Let $t \in N(z) \setminus \{w\} \neq \emptyset$, then $t \notin D$ and $(D \setminus \{u\}) \cup \{t\}$ is a DTDS of *T'*. If $d(w) \ge 3$, then there is a vertex $t \in N(w) - D$. Thus, $(D \setminus \{u\}) \cup \{t\}$ is a DTDS of *T'*. In each case, we have $|D| \geq \gamma_t^D(T')$. This completes the proof of $\gamma_t^D(T) \geq \frac{3(d+1)}{5}$.

If $T \in \xi_1$, it is easy to verify that $D = \bigcup_{i=1}^{(d+1)/5} \{x_{5i-3}, x_{5i-2}, x_{5i-1}\}$ is a DTDS of T. Thus, $\gamma_t^D(T) \leq \frac{3(d+1)}{5}$. Since $\gamma_t^D(T) \ge \frac{3(d+1)}{5}$, we have $\gamma_t^D(T) = \frac{3(d+1)}{5}$.

Conversely, suppose *T* is a tree of order $n \ge 3$ and diameter *d* satisfying $\gamma_t^D(T) = \frac{3(d+1)}{5}$. Then $d+1 \equiv 0 \pmod{5}$. Let $P = x_1 - x_2 - \ldots - x_{d+1}$ be a path of length d in T and D a $\gamma_t^D(T)$ -set of T. For $i = 1, 2, \ldots, \frac{d+1}{5}$, let T_i be the component of $T - \bigcup_{j=1}^{(d-4)/5} \{x_{5j}x_{5j+1}\}\)$ containing the vertex x_{5i} and $P_i = x_{5i-4}-x_{5i-3}-x_{5i-2}-x_{5i-1}-x_{5i}$ be a subpath of P (we define $\bigcup_{j=1}^{(d-4)/5} \{x_{5j}x_{5j+1}\} := \emptyset$ if $d = 4$). Since D is a DTDS of T, $|D \cap V(T_i)| \geq 3$. Thus, $|D| \geq 3(d+1)/5$. As $|D| = \gamma_t^D(T) = 3(d+1)/5$, we obtain $|D \cap V(T_i)| = 3$ for $i = 1, 2, ..., \frac{d+1}{5}$. We will show that $D \cap V(T_i) = \{x_{5i-3}, x_{5i-2}, x_{5i-1}\}$ for $i = 1, 2, ..., \frac{d+1}{5}$.

Fact 1.
$$
|D \cap V(P_i)| = 3
$$
 for $i = 1, 2, ..., \frac{d+1}{5}$

Proof of Fact 1. Suppose there is an $i_0 \in \{1, 2, \ldots, \frac{d+1}{5}\}$ such that $|D \cap V(P_{i_0})| = 1$. Assume $D \cap V(P_{i_0}) = \{x\}$. Since every component of T[D] has at least three vertices and $|V(\tilde{T}_{i_0}) \cap D| = 3$, there are two vertices y and z in $(V(T_{i_0}) - V(P_{i_0})) \cap D$ with either $y \in N(x)$ and $z \in N(y)$, or $\{y, z\} \subseteq N(x)$. If $x \in \{x_{5i_0-4}, x_{5i_0-3}\}$ (resp. $x \in \{x_{5i_0-1}, x_{5i_0}\}$), then $N(x_{5i_0-1}) \cap D = \emptyset$ (resp. $N(x_{5i_0-3})\cap D=\emptyset$), a contradiction. If $x=x_{5i_0-2}$, then $N[x_{5i_0-3}]\cap D=N[x_{5i_0-1}]\cap D=\{x_{5i_0-2}\}$, a contradiction. Thus, $|D \cap V(P_i)| \geq 2$ for $i = 1, 2, ..., \frac{d+1}{5}$.

.

Download English Version:

<https://daneshyari.com/en/article/417988>

Download Persian Version:

<https://daneshyari.com/article/417988>

[Daneshyari.com](https://daneshyari.com)