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a differentiating-total dominating set if for every pair of distinct vertices u and v in V,
N[u] NS # N[v] N S. The minimum cardinality of a differentiating-total dominating
set of G is the differentiating-total domination number of G, denoted by y,”(G). We show
that, for a tree T of order n > 3 and diameter d having I leaves and s support vertices,

K : _

ngzvords 73(:1;1) <y2(T) <n- @ and 2(n+ 1+ % —s5) < yP(M) < —3(";'). Moreover, we
Locating-total dominating set characterize the extremal trees achieving these bounds.

Locating-total domination number © 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The concept of a locating-total dominating set and a differentiating-total dominating set in a graph was introduced in
[3,6]. The problem of placing monitoring devices in a system such that every site (including the monitors themselves) in
the system is adjacent to a monitor can be modeled by total domination in graphs. Applications where it is also important
that if there is a problem in a device, its location can be uniquely identified by the set of monitors, can be modeled by a
combination of total domination and locating in graphs. In this paper, we consider differentiating-total domination in trees.

This paper will follow the notation and terminology defined in [4,5]. Let G = (V, E) be a graph of order n with no isolated
vertex. For a vertex v in G, the set N(v) = {u € V | uv € E} is called the open neighborhood of v and N[v] = N(v) U {v}
is the closed neighborhood of v. For a subset S € V, N(S) = J,s N(v) is the open neighborhood of S and N[S] = N(S) US
is the closed neighborhood of S. A subset S of V is called a dominating set (DS) of G if N[S] = V and S is a total dominating
set (TDS) of Gif N(S) = V. ATDS S is a locating-total dominating set (LTDS) if for every pair of distinct vertices u and v in
V —S,N(u) NS # N(v) NS, and S is a differentiating-total dominating set (DTDS) if for every pair of distinct vertices u and
vinV,N[u] NS # N[v] N'S. The minimum cardinality of a LTDS (or DTDS) of G is the locating-total domination number (or
differentiating-total domination number) of G and denoted by y(G) (or ¥P(G)). A LTDS (or DTDS) of cardinality y(G) (or
yP(G)) is called a y1(G)-set (or y2(G)-set).

Given a graph G = (V, E), the degree of v in G, denoted by d(v) or dg(v), is equal to |[N(v)|. A vertex of degree one is a
leaf and the edge incident with a leaf is known as a pendent edge. A vertex adjacent to a leaf is a support vertex and a support
vertex adjacent to at least two leaves is a strong support vertex. We will use L(G) and S(G) to denote the set of leaves and
support vertices of G, respectively. For arbitrary two vertices u and v in G, the distance between u and v, denoted by d(u, v),
is the number of edges in a shortest path joining u and v. If there is no such path, then we define d(u, v) = oo. The diameter
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of G is the maximum distance among all pairs of vertices of G, denoted by diam(G). If A and B are two disjoint subsets of V,
then [A, B] = {uv € E(G)|u € A, v € B}. For a subset S of V, we use G[S] to denote the subgraph induced by S. Let G and H
be two disjoint graphs. The disjoint union of G and H, denoted by G + H, is the graph with vertex set V(G) U V(H) and edge
set E(G) UE(H).IfGy = - - - = Gy, we write kG, for Gy + - - - + Gy.

A path of order n is P,. A star of order n is denoted by S,. A tree is called a double star S(p, q), if it is obtained from Sp,
and Sy by identifying a leaf of S, with the center of S¢ 1, where p, ¢ > 1. Given a graph G = (V, E), the corona of G,
cor(G), is a graph obtained from G by adding a pendent edge to each vertex of G.

Differentiating-total domination in trees has been studied in [1,6]. In this paper, we continue the study of it. We show
that, for a tree T of order n > 3 and diameter d having I leaves and s support vertices, @ <yPM <n- 2(d 2 and

%(n + 1+ % —5) < y[D (T) < “"T”) Moreover, we characterize the extremal trees achieving these bounds.

2. Lower bounds on the differentiating-total domination number of a tree
The differentiating-total domination number of P,, was given in [6].

Theorem 1 ([6]). For n > 3,

’735’1—‘ ifn#3 (mod5),
Ve (Py) =

’735”—‘—%1 ifn=3 (mod)5).

The following result gives a lower bound of y; D(T) involving diameter. Suppose n and d are two positive integers with

d+1=0(mod5)andd+1<n< S(d;” . Let &; be the family of trees of order n and diameter d that can be obtained from
apath P = x;-x,-...-x441 of length d by adding n — d — 1 isolated vertices such that each new vertex is adjacent only to

vertices in U(d+1)/ 5{x5,-_2} and the resulting tree has no strong support vertices.

Theorem 2. Suppose T is a tree of order n > 3 and diameter d, then y>(T) > 3(‘”1) and the equality holds ifand only if T € &;.

Proof. We proceed by induction on the order n.If n = 3, then T = P3 and y, P(Ty=3> 3(‘”1) by Theorem 1.
Assume that every tree T’ of order 3 < n’ < n and diameter d’ satisfies y, Dy > 3@+1 “) .Let T be a tree of ordern > 3

and diameter d. If T is a path, then y2(T) > 3 = 2D by Theorem 1.

Now suppose T is not a path.Let P = x1—x2— ..—X4+1 be apath oflengthdin T and v € V(P) such thatd(v) > 3.Letube
avertex in V(T) — V(P) such that d(v, u) is maximum. Thenu € L(T). Let N(u) = {w}and T =T —u.Thenn’ =n—1> 3
and d’ = d. By the inductive hypothesis, y2(T") > 2¢+1 St = 3D,

Let D be a y[D(T) set of T. Since w € S(T), w € D. Let T, be the component in T[D] containing w. If u & V(T,), then D is
aDTDS of T'. Now assume u € V(T,). If [V(T,)| > 4, then D \ {u} is a DTDS of T. So we assume |V (T,,)| = 3.

Ifd(w) = 2, then V(T,) = N[w] = {u, w, z} for some vertex z. Let t € N(z) \ {w} # @,thent ¢ Dand (D \ {u}) U {t}
isaDTDS of T'. If d(w) > 3, then there is a vertex t € N(w) — D. Thus, (D \ {u}) U {t} is a DTDS of T'. In each case, we have
ID| > y2(T"). This completes the proof of y2(T) > 241,

If T € &, itis easy to verify that D = U(d+])/5{x5,,3,x5,-,2, Xsi_1} is a DTDS of T. Thus, ytD(T) < @ Since
y2(T) = 245D we have y2(T) = 240,
Conversely, suppose T is a tree of order n > 3 and diameter d satisfying y; Dy = 3(‘”1) .Thend + 1 = 0 (mod 5). Let
P = X;-Xy—...-Xq441 be a path of length d in T and D a y, D(T)-setof T. Fori = 1,2,..., d“ , let T; be the component
of T — U(d 4) {Xsjxsi41} containing the vertex xs; and P; = Xsj_4—Xs5i_3-Xs5i_2—X5i_1—X5; be a subpath of P (we define
UL/ {xsjxsj1} == @if d = 4).Since DisaDTDS of T, DNV (T})| > 3.Thus, [D| > 3(d+1)/5.As|D| = y2(T) = 3(d+1)/5,
we obtain [DNV(T)| = 3fori=1,2,..., *. We will show that D N V(T}) = {xsi_3, Xsi_2, Xsi—1} fori=1,2,..., &L,

Fact1. [DNV(P)| =3fori=1,2,..., &

Proof of Fact 1. Suppose thereisaniy € {1,2,..., %} such that |[D N V(P;,)| = 1. Assume D N V(P;,) = {x}. Since every
component of T[D] has at least three vertices and |V (T;,) N D| = 3, there are two vertices y and z in (V(T;)) — V(Py,)) N D
with eithery € N(x) andz € N(y), or {y, z} € N(x).If x € {Xs54,_4, Xs,—3} (r€sp. x € {X5iy_1, Xs,}), then N(x5,_1) N D = ¢}
(resp. N (xsi,—3) N D = ), a contradiction. If x = Xs;,_», then N[xs,_3] N D = N[xs;,—1]1ND = {x54,—»}, a contradiction. Thus,
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