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a b s t r a c t

Given a graphG = (V , E)with no isolated vertex, a subset S of V is called a total dominating
set of G if every vertex in V is adjacent to a vertex in S. A total dominating set S is called
a differentiating-total dominating set if for every pair of distinct vertices u and v in V ,
N[u] ∩ S ≠ N[v] ∩ S. The minimum cardinality of a differentiating-total dominating
set of G is the differentiating-total domination number of G, denoted by γ D

t (G). We show
that, for a tree T of order n ≥ 3 and diameter d having l leaves and s support vertices,
3(d+1)

5 ≤ γ D
t (T ) ≤ n −

2(d−2)
5 and 6

11 (n + 1 +
l
2 − s) ≤ γ D

t (T ) ≤
3(n+l)

5 . Moreover, we
characterize the extremal trees achieving these bounds.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The concept of a locating-total dominating set and a differentiating-total dominating set in a graph was introduced in
[3,6]. The problem of placing monitoring devices in a system such that every site (including the monitors themselves) in
the system is adjacent to a monitor can be modeled by total domination in graphs. Applications where it is also important
that if there is a problem in a device, its location can be uniquely identified by the set of monitors, can be modeled by a
combination of total domination and locating in graphs. In this paper, we consider differentiating-total domination in trees.

This paper will follow the notation and terminology defined in [4,5]. Let G = (V , E) be a graph of order nwith no isolated
vertex. For a vertex v in G, the set N(v) = {u ∈ V | uv ∈ E} is called the open neighborhood of v and N[v] = N(v) ∪ {v}

is the closed neighborhood of v. For a subset S ⊆ V , N(S) =


v∈S N(v) is the open neighborhood of S and N[S] = N(S) ∪ S
is the closed neighborhood of S. A subset S of V is called a dominating set (DS) of G if N[S] = V and S is a total dominating
set (TDS) of G if N(S) = V . A TDS S is a locating-total dominating set (LTDS) if for every pair of distinct vertices u and v in
V − S, N(u) ∩ S ≠ N(v) ∩ S, and S is a differentiating-total dominating set (DTDS) if for every pair of distinct vertices u and
v in V , N[u] ∩ S ≠ N[v] ∩ S. The minimum cardinality of a LTDS (or DTDS) of G is the locating-total domination number (or
differentiating-total domination number) of G and denoted by γ L

t (G) (or γ D
t (G)). A LTDS (or DTDS) of cardinality γ L

t (G) (or
γ D
t (G)) is called a γ L

t (G)-set (or γ D
t (G)-set).

Given a graph G = (V , E), the degree of v in G, denoted by d(v) or dG(v), is equal to |N(v)|. A vertex of degree one is a
leaf and the edge incident with a leaf is known as a pendent edge. A vertex adjacent to a leaf is a support vertex and a support
vertex adjacent to at least two leaves is a strong support vertex. We will use L(G) and S(G) to denote the set of leaves and
support vertices of G, respectively. For arbitrary two vertices u and v in G, the distance between u and v, denoted by d(u, v),
is the number of edges in a shortest path joining u and v. If there is no such path, then we define d(u, v) = ∞. The diameter
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of G is the maximum distance among all pairs of vertices of G, denoted by diam(G). If A and B are two disjoint subsets of V ,
then [A, B] = {uv ∈ E(G)|u ∈ A, v ∈ B}. For a subset S of V , we use G[S] to denote the subgraph induced by S. Let G and H
be two disjoint graphs. The disjoint union of G and H , denoted by G + H , is the graph with vertex set V (G) ∪ V (H) and edge
set E(G) ∪ E(H). If G1 ∼= · · · ∼= Gk, we write kG1 for G1 + · · · + Gk.

A path of order n is Pn. A star of order n is denoted by Sn. A tree is called a double star S(p, q), if it is obtained from Sp+2
and Sq+1 by identifying a leaf of Sp+2 with the center of Sq+1, where p, q ≥ 1. Given a graph G = (V , E), the corona of G,
cor(G), is a graph obtained from G by adding a pendent edge to each vertex of G.

Differentiating-total domination in trees has been studied in [1,6]. In this paper, we continue the study of it. We show
that, for a tree T of order n ≥ 3 and diameter d having l leaves and s support vertices, 3(d+1)

5 ≤ γ D
t (T ) ≤ n −

2(d−2)
5 and

6
11 (n + 1 +

l
2 − s) ≤ γ D

t (T ) ≤
3(n+l)

5 . Moreover, we characterize the extremal trees achieving these bounds.

2. Lower bounds on the differentiating-total domination number of a tree

The differentiating-total domination number of Pn was given in [6].

Theorem 1 ([6]). For n ≥ 3,

γ D
t (Pn) =



3n
5


if n ≢ 3 (mod 5),

3n
5


+ 1 if n ≡ 3 (mod 5).

The following result gives a lower bound of γ D
t (T ) involving diameter. Suppose n and d are two positive integers with

d+ 1 ≡ 0 (mod 5) and d+ 1 ≤ n ≤
6(d+1)

5 . Let ξ1 be the family of trees of order n and diameter d that can be obtained from
a path P = x1–x2– . . . –xd+1 of length d by adding n − d − 1 isolated vertices such that each new vertex is adjacent only to
vertices in

(d+1)/5
i=1 {x5i−2} and the resulting tree has no strong support vertices.

Theorem 2. Suppose T is a tree of order n ≥ 3 and diameter d, then γ D
t (T ) ≥

3(d+1)
5 and the equality holds if and only if T ∈ ξ1.

Proof. We proceed by induction on the order n. If n = 3, then T = P3 and γ D
t (T ) = 3 > 3(d+1)

5 by Theorem 1.

Assume that every tree T ′ of order 3 ≤ n′ < n and diameter d′ satisfies γ D
t (T ′) ≥

3(d′
+1)
5 . Let T be a tree of order n > 3

and diameter d. If T is a path, then γ D
t (T ) ≥

3n
5 =

3(d+1)
5 by Theorem 1.

Now suppose T is not a path. Let P = x1–x2– . . . –xd+1 be a path of length d in T and v ∈ V (P) such that d(v) ≥ 3. Let u be
a vertex in V (T )− V (P) such that d(v, u) is maximum. Then u ∈ L(T ). Let N(u) = {w} and T ′

= T − u. Then n′
= n− 1 ≥ 3

and d′
= d. By the inductive hypothesis, γ D

t (T ′) ≥
3(d′

+1)
5 =

3(d+1)
5 .

Let D be a γ D
t (T )-set of T . Since w ∈ S(T ), w ∈ D. Let Tw be the component in T [D] containing w. If u ∉ V (Tw), then D is

a DTDS of T ′. Now assume u ∈ V (Tw). If |V (Tw)| ≥ 4, then D \ {u} is a DTDS of T ′. So we assume |V (Tw)| = 3.
If d(w) = 2, then V (Tw) = N[w] = {u, w, z} for some vertex z. Let t ∈ N(z) \ {w} ≠ ∅, then t ∉ D and (D \ {u}) ∪ {t}

is a DTDS of T ′. If d(w) ≥ 3, then there is a vertex t ∈ N(w) − D. Thus, (D \ {u}) ∪ {t} is a DTDS of T ′. In each case, we have
|D| ≥ γ D

t (T ′). This completes the proof of γ D
t (T ) ≥

3(d+1)
5 .

If T ∈ ξ1, it is easy to verify that D =
(d+1)/5

i=1 {x5i−3, x5i−2, x5i−1} is a DTDS of T . Thus, γ D
t (T ) ≤

3(d+1)
5 . Since

γ D
t (T ) ≥

3(d+1)
5 , we have γ D

t (T ) =
3(d+1)

5 .
Conversely, suppose T is a tree of order n ≥ 3 and diameter d satisfying γ D

t (T ) =
3(d+1)

5 . Then d + 1 ≡ 0 (mod 5). Let
P = x1–x2– . . . –xd+1 be a path of length d in T and D a γ D

t (T )-set of T . For i = 1, 2, . . . , d+1
5 , let Ti be the component

of T −
(d−4)/5

j=1 {x5jx5j+1} containing the vertex x5i and Pi = x5i−4–x5i−3–x5i−2–x5i−1–x5i be a subpath of P (we define(d−4)/5
j=1 {x5jx5j+1} := ∅ if d = 4). SinceD is a DTDS of T , |D∩V (Ti)| ≥ 3. Thus, |D| ≥ 3(d+1)/5. As |D| = γ D

t (T ) = 3(d+1)/5,
we obtain |D ∩ V (Ti)| = 3 for i = 1, 2, . . . , d+1

5 . We will show that D ∩ V (Ti) = {x5i−3, x5i−2, x5i−1} for i = 1, 2, . . . , d+1
5 .

Fact 1. |D ∩ V (Pi)| = 3 for i = 1, 2, . . . , d+1
5 .

Proof of Fact 1. Suppose there is an i0 ∈ {1, 2, . . . , d+1
5 } such that |D ∩ V (Pi0)| = 1. Assume D ∩ V (Pi0) = {x}. Since every

component of T [D] has at least three vertices and |V (Ti0) ∩ D| = 3, there are two vertices y and z in (V (Ti0) − V (Pi0)) ∩ D
with either y ∈ N(x) and z ∈ N(y), or {y, z} ⊆ N(x). If x ∈ {x5i0−4, x5i0−3} (resp. x ∈ {x5i0−1, x5i0}), then N(x5i0−1) ∩ D = ∅

(resp. N(x5i0−3)∩D = ∅), a contradiction. If x = x5i0−2, then N[x5i0−3]∩D = N[x5i0−1]∩D = {x5i0−2}, a contradiction. Thus,
|D ∩ V (Pi)| ≥ 2 for i = 1, 2, . . . , d+1

5 .
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