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a b s t r a c t

Wegeneralize Chade and Smith’s (2006) simultaneous search problem to a class of discrete
optimization problems. More precisely, we study the problem of maximizing a weighted
sum of utilities of objects minus the sum of costs of acquiring these objects, given the
constraint that the sum of weights cannot exceed the value of some submodular function.

We show that the problem has a simple solutions in the particular case in which the
submodular function depends only on the number of objects. Namely, the optimal set of
objects can be found by the greedy algorithm. We provide some economic applications of
this result. The particular case studied in the present paper, and the particular case studied
by Chade and Smith complement one another, but they do not exhaust all instances of our
general discrete optimization problem. We also show that in the general case the problem
does not have a simple solution.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Chade and Smith [4] introduce an interesting discrete optimization problem involving a high-school student applying
to colleges. The student must choose a subset of colleges. Each application costs a c > 0. Studying at different colleges
gives different utilities, and the probability of being admitted also varies across colleges. From the set of colleges to which
the student is admitted, she or he chooses the one with the highest utility. Chade and Smith point out that the threshold
strategy of applying to colleges which give more than a certain utility may not be optimal, and they show that the optimum
is attained by a simple greedy algorithm.1

According to this algorithm,we first put on a list the collegewewould apply to, if wewere allowed to apply to one college
only. Then, we add to this list the college that we would apply to, if we were allowed to apply to one more college. We keep
adding colleges to the list until the marginal benefit of adding any other college falls below the cost c.

In this paper we are concerned with a more general problem of maximizing a weighted sum of utilities of objects minus
the sum of costs of acquiring these objects, given the constraint that the sum of weights assigned to any subset of objects
S cannot exceed f (S), where f is a non-decreasing, non-negative submodular function. Call this more general problem the
simultaneous selection problem, or (SSP) in abbreviation.

This generalizes Chade and Smith’s problem in twoways. It allows for different objects having different costs. In addition,
in Chade and Smith’s problem f (S) has a very special form, which is the probability of being admitted by at least one college
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1 It should be noted that the optimality of the greedy algorithm for the college application problem is not the only result in Chade and Smith (see
Section 2.1).
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from S. Both ways in which Chade and Smith’s problem is generalized, allow for new applications. In searching for a job
instead of applying to colleges, the application process typically varies across employers. Other functions f also enlarge the
set of applications. For example, imagine an inventory planning problem, in which youmust order today some goods, which
you will later be selling gradually, one per period. In this application, assuming geometric discounting, f (S) is the present
value of the stream of 1’s over |S| periods.

We show that the (SSP) can be solved by the greedy algorithm in the case in which f (S) depends on |S| only. In particular,
the greedy algorithm selects an optimal set in some versions of the applications described in the previous paragraph. Our
result and that obtained by Chade and Smith complement one another. Neither subsumes the other, and they also apply to
somewhat different settings.

In the absence of additional assumptions on the function f , the (SSP) is NP-hard. In fact it is APX-hard (Feige et al. (2009)).
An interesting open question is the design of good approximation algorithms for the (SSP). We show by an example that for
any ε > 0, the greedy algorithm may select a set S that returns less than an ε share of the optimum.

2. Simultaneous selection problem

Let f be a nonnegative function defined on all subsets of a finite set N . We assume that f is non-decreasing, i.e.,

f (S) ≤ f (T ), ∀ S ⊂ T ⊂ N,

and submodular, i.e.,

f (S ∩ T ) + f (S ∪ T ) ≤ f (S) + f (T ), ∀ S, T ⊂ N.

An equivalent definition of submodularity is

f (S ∪ i) − f (S) ≥ f (T ∪ i) − f (T )

for all S ⊆ T and i ∉ T .
Given numbers (utilities) wi ≥ 0, ∀i ∈ N , define the function g on each T ⊆ N by the following optimization problem:

g(T ) = max

i∈T

wixi

s.t.

i∈S

xi ≤ f (S), ∀S ⊆ T

xi ≥ 0, ∀i ∈ T .

This function can be interpreted as the maximum utility that one can obtain by assigning weights xi to the elements of
T , subject to the ‘‘resource’’ constraint that the aggregate weight assigned to any set S cannot exceed f (S).

The submodularity of f implies that g is defined bymaximizing a linear function over a polymatroid. Hence, using thewell
known greedy algorithm for polymatroid optimization, guarantees that g has the following expression. Label the elements
of T as {1, 2, . . . , |T |}, and order them so that w1 ≥ w2 ≥ · · · w|T |. Then, it is optimal to assign the highest possible weight,
x1 = f (1), to the element with the highest utility, that is, to element 1 ; and next, to assign the highest possible weight
subject to the resource constraint, x2 = f (1, 2) − f (1), to the element with the second-highest utility, that is, to element 2;
etc., until assigning weight x|T | = f (1, 2, . . . , |T |) − f (1, 2, . . . , |T | − 1) to element |T |.2

In what follows, we denote by x(T ) the vector of optimal weights assigned to set T ⊆ N . Hence,

g(T ) =


i∈T

wixi(T ).

It is immediate that function g , defined on all subsets of N , is submodular.
Given numbers (costs) ci ≥ 0,∀i ∈ N , we define a problem called the simultaneous selection problem (in short, (SSP)) as

max
T⊆N


g(T ) −


i∈T

ci


. (SSP)

The number ci can be interpreted as the cost of including element i to set T . For convenience, set

H(T ) = g(T ) −


i∈T

ci.

In the following sections, we demonstrate that the (SSP) covers various, basic and seemingly unrelated applications.3

2 See [6].
3 We note that the (SSP) belongs to a larger class of problems that are obtained by replacing a hard capacity constraint with a penalty term that scales

linearly with a violation in the capacity constraint. For an example of this see [1].
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