Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

An FPT algorithm for the vertex cover P₄ problem

Jianhua Tu^{a,*}, Zemin Jin^b

^a School of Science, Beijing University of Chemical Technology, Beijing 100029, China
^b Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China

ARTICLE INFO

Article history: Received 17 January 2015 Received in revised form 15 May 2015 Accepted 21 June 2015 Available online 15 July 2015

Keywords: Graph algorithms Parameterized complexity Vertex cover P₄ problem Iterative compression

ABSTRACT

A subset *F* of vertices of a graph *G* is called a vertex cover $P_t(VCP_t)$ set if every path of order *t* in *G* contains at least one vertex from *F*. The vertex cover $P_t(VCP_t)$ problem is to find a minimum VCP_t set in a graph. The VCP_t problem is NP-complete for any integer $t \ge 2$. In this paper, we restrict our attention to the VCP_4 problem and present an FPT algorithm with runtime $O^*(3^k)$ for the VCP_4 problem. The algorithm constructs a VCP_4 set of size at most *k* in a given graph *G*, or reports that no such VCP_4 set exists in *G*.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A subset *F* of vertices of a graph *G* is called a vertex cover P_t (*VCP*_t) set if every path of order *t* in *G* contains at least one vertex from *F*. Denote by $\psi_t(G)$ the minimum cardinality of a *VCP*_t set in *G*. The vertex cover P_t (*VCP*_t) problem is to find a minimum *VCP*_t set in a graph. Or equivalently, the *VCP*_t problem is to find a minimum set *F* of vertices in *G* such that the graph *G*[*V* \ *F*] has no (not necessarily induced) P_t . Clearly, the *VCP*₂ problem corresponds to the well-known vertex cover problem.

The concept of the VCP_t problem is motivated by real-life problems. The first motivation comes from the design of secure protocols for communication in wireless sensor networks (see [18]). The second motivation is related to controlling traffic in computer networks. The analogous motivation from the area of controlling traffic at street crossings can be found in [20].

The *VCP*_t problem is known to be NP-complete for any integer $t \ge 2$ [15]. For the weighted version of the *VCP*_t problem, Brešar et al. [4] presented linear-time algorithms for complete graphs, cycles and trees. Some bounds on $\psi_t(G)$ have been given in [2,3,13].

Li and Tu [16] proved that the VCP₄ problem is NP-complete for cubic graphs and presented a 2-approximation algorithm for the VCP₄ problem in cubic graphs. Devi et al. [7] proved that the VCP₄ problem is APX-complete for cubic graphs as well as $K_{1,4}$ -free graphs and presented a 2-approximation algorithm for the VCP₄ problem in regular graphs and a 3-approximation algorithm for the VCP₄ problem in regular graphs and a 3-approximation algorithm for the VCP₄ problem in K_{1,4}-free graphs.

Many graphs that appear in practical applications are sparse, meaning that there are few edges (compared to the maximum number of edges possible). Hence, in a real world application it can be expected that the size k of the minimum VCP_4 set, i.e., the number of vertices in the VCP_4 set, is fairly small. This motivated the study of *parameterized algorithm* for the VCP_4 problem. Parameterized algorithm analysis is a multi-dimensional analysis of the runtime as a function of the input size and parameter(s). A parameterized problem (I, k) is *fixed-parameter tractable* (FPT) with respect to the parameter k if it

* Corresponding author. E-mail addresses: tujh81@163.com (J. Tu), zeminjin@zjnu.cn (Z. Jin).

http://dx.doi.org/10.1016/j.dam.2015.06.032 0166-218X/© 2015 Elsevier B.V. All rights reserved.

The compression routine (G, F)Input: A graph G = (V, E) and a VCP_4 set F for G. Output: A smaller VCP_4 set F' for G, if it exists, otherwise F. 1. for each subset $Y \subsetneq F$ 2. $X \leftarrow F \setminus Y$ 3. $G' \leftarrow G - Y$ 4. if G[X] is a P_4 -free graph, then 5. $X' = \text{SV-}VCP_4(G', X, V(G') \setminus X, |X| - 1)$ 6. if $X' \neq$ "No" then return $X' \cup Y$ 7. return F

Fig. 1. Pseudo-code of the compression routine for the *VCP*₄ problem. Algorithm SV-*VCP*₄(G', X, $V(G') \setminus X$, |X| - 1) solves the Disjoint Compression *VCP*₄ problem.

can be solved in $f(k) \cdot (|I|)^{O(1)}$ time, where f is an *arbitrary* function depending only on k, |I| is the input size of the instance. Such an algorithm is referred to as an FPT algorithm for the problem (see [8,17] for more details). Thus, an FPT algorithm becomes practically efficient when the value k is small. The runtime $f(k) \cdot (|I|)^{O(1)}$ of an FPT algorithm is generally denoted as $O^*(f(k))$ by suppressing the polynomial terms.

The fixed-parameter tractability of the VCP_4 problem was first shown in [5] by a trivial FPT algorithm with runtime $O^*(4^k)$. In this paper, we present an $O^*(3^k)$ FPT algorithm for the VCP_4 problem. The general approach of our algorithm is based on the *iterative compression* method which has led to the design of FPT algorithms for many other problems [6,10–12,14,19].

2. Iterative compression for the VCP₄ problem

2.1. Preliminaries

We consider finite, simple and undirected graphs *G*. *V*(*G*) and *E*(*G*) denote its vertex set and its edge set, respectively. For $v \in V(G)$, denote by N(v) the set of neighbors of *v*. The degree d(v) is equal to |N(v)|. For a subset $X \subseteq V(G)$, the subgraph induced by *X* is denoted by *G*[*X*]. The difference of two sets, written $A \setminus B$ is the set of all elements of *A* that are not elements of *B*. For simplicity we will use the notation G - w and G - W for respectively $G[V \setminus \{w\}]$ and $G[V \setminus W]$ where $w \in V$ and $W \subset V$.

As usual, P_t denotes the path with t vertices. A triangle is a cycle with 3 vertices. For $s \ge 2$, the graph $K_{1,s} = (\{u, v_1, \ldots, v_s\}, \{uv_1, \ldots, uv_s\})$ is a star. The vertex u is the *center* of the star and the vertices v_1, \ldots, v_s are the *leaves* of the star. Note that according to the definition of a star, an isolated edge is not a star. In all graph problems that follow, n denotes the number of vertices and m denotes the number of edges. For all terminologies and notations not defined here, we refer the reader to [1].

If *G* has no path on 4 vertices then we refer to *G* as a P_4 -free graph, though the path mentioned here is not necessarily induced.

The parameterized version of the VCP₄ problem we study is formally defined as follows:

Input: A graph G = (V, E) and a nonnegative integer k.

Task: Find a subset $F \subseteq V$ of vertices with $|F| \leq k$ such that each path of order 4 in *G* contains at least one vertex from *F* (the removal of all vertices in *F* from *G* results in a P_4 -free graph).

Note if *F* is a *VCP*₄ set for G = (V, E), then each connected component of $G[V \setminus F]$ is an isolated vertex, or an isolated edge, or a star, or a triangle.

2.2. Iterative compression framework

We present an FPT algorithm for the VCP_4 problem using the *iterative compression* method. We give a general iterative compression framework for the VCP_4 problem. First, we show how to employ the compression routine.

Iteration. We start with empty vertex subsets $V' = \emptyset$ and $F = \emptyset$; clearly, an empty set is a VCP₄ set for an empty graph. Iterating over all graph vertices, step by step we add one vertex $v \in V \setminus V'$ to both V' and F. Then F is still a VCP₄ set for G[V'], although possibly not a minimum one. In each step we try to find a smaller VCP₄ set for G[V'] by applying a *compression routine* (described below). It takes the graph G[V'] and a VCP₄ set F for G[V'], and returns a smaller VCP₄ set for G[V'], or proves that F is optimal (by returning a VCP₄ set of the same size). If F is optimal and |F| > k, then we can conclude that G does not have a VCP₄ set of size at most k. Since eventually V' = V, we obtain a VCP₄ set of size at most k for G once the algorithm returns F.

Compression. It remains to describe the *compression routine*. Given a graph G and a solution F for the VCP_4 problem, the compression routine finds a smaller solution for G or proves that the solution F is of minimum size. The compression routine works as follows. See Fig. 1 for the corresponding pseudo-code. Consider a smaller VCP_4 set F' as a modification of the larger

Download English Version:

https://daneshyari.com/en/article/417992

Download Persian Version:

https://daneshyari.com/article/417992

Daneshyari.com