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a b s t r a c t

The paper is concerned with the problem of scheduling on parallel identical machines par-
tially ordered tasks that can be preempted at integer points in time. The objective function
is the maximum lateness. The well-known algorithms for scheduling unit execution time
tasks and for scheduling with arbitrary preemptions are not directly applicable to the con-
sidered problem. The paper presents a new method for scheduling with integer preemp-
tions and the worst-case analysis for several polynomial-time algorithms which have this
method as a core scheduling routine.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

This paper presents polynomial-time algorithms and analyses their worst-case performance for the following scheduling
problem. A finite set of tasks (jobs, operations) N = {1, 2, . . . , n} is to be processed on m > 1 identical parallel machines
(processors). The processing of tasks begins at time t = 0. Each machine can process only one task at a time, and each task
can be processed by only one machine at a time. Since all machines are identical, it is not important what machine actually
processes a task, provided that the number of tasks, processed simultaneously, does not exceedm.

The order in which tasks can be processed is restricted by precedence constraints — a transitive, antireflexive and
antisymmetric relation on N . If task j precedes task g , denoted j → g , then task g cannot be processed until task j has been
completed. In this case, g is called a successor of j and j is a predecessor of g . Task j is an immediate predecessor of task g if
j → g and there is no q ∈ N such that j → q → g . Task g is an immediate successor of j if j is an immediate predecessor of g .

The processing of a task can commence only at an integer point in time. At any integer point in time, the processing of a
task can be interrupted and resumed later at another integer point in time. The processing time of j ∈ N will be denoted pj
and is an integer. In other words, pj is the integer number of time units that j should accumulate in order to be completed.

The constraints on the points in time where preemptions can occur permit more accurate modeling of various practical
situations. For example, it permits modeling of the discrete nature of CPU clock cycles. More accurate models with limited
preemptions have been subject to increasing attention in recent years, for example [3].

A schedule σ specifies, for each task j, a sequence of time units where j is processed. The right end of the last of these time
units is denoted by Cj(σ ) and is referred to as the completion time of j in schedule σ . The goal is to minimize the maximum
lateness

Lmax(σ ) = max
j∈N

{Cj(σ ) − dj},

where dj is the integer due time (due date) by which it is desired to complete j.
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If all pj = 1, then no preemptions are involved and the considered scheduling problem becomes the classical maximum
lateness problem with unit execution time (UET) tasks. In the standard three-field notation (see for example [1] or [9]) the
latter problem is denoted by P|prec, pj = 1|Lmax. It is well-known that P|prec, pj = 1|Lmax is NP-hard in the strong sense [11].

The problemwith integer preemptions can be reduced to P|prec, pj = 1|Lmax by replacing each j ∈ N by a chain of pj UET
tasks. Unfortunately, this reduction cannot be accomplished in an amount of time polynomial in n. Therefore, the known
polynomial-time approximation algorithms for P|prec, pj = 1|Lmax are not directly applicable.

The relaxation of the restriction that tasks can commence processing only at integer points in time and that the
preemptions and resumptions of processing canoccur only at integer points in timegives thewell-knownmaximum lateness
problem with preemptions. This scheduling problem is denoted in the three-field notation by P|prmp, prec|Lmax.

The problems P|prec, pj = 1|Lmax and P|prmp, prec|Lmax are closely related. Thus, the algorithms in [2,4] and [12], which
were developed for the P|prec, pj = 1|Lmax problem, were modified in [7,5] and [13] for the problem P|prmp, prec|Lmax.
The core of all these modifications is an algorithm which schedules tasks according to their priorities, whereas the idea of
the method of calculating priorities was borrowed from the algorithms for P|prec, pj = 1|Lmax. Two version of this core
scheduling algorithm for P|prmp, prec|Lmax can be found in [7] and [10].

The paper presents a new polynomial-time algorithm for P|prec, prmp|Lmax which can be viewed as an amalgamation
of the algorithms in [7] and [10]. This new algorithm is an alternative to the algorithms in [7] and [10], although in this
paper its role is limited to be a subroutine (first phase) in another polynomial-time algorithm for the problem with integer
preemptions. The latter algorithm will be referred to as Algorithm IP. The paper also presents modifications, for the case of
integer preemptions, of the algorithms originally described in [2,4] and [12] for P|prec, pj = 1|Lmax. All three modifications
are based on Algorithm IP and are characterized by their worst-case performance guarantees.

The structure of the paper is as follows. Section 2 describes Algorithm IP, which constructs a schedule using the tasks’
priorities. The computation of tasks’ priorities requires that each task j should be assigned a certain parameter µj. Section 3
describes three methods of computing these µ’s. These three methods are modifications of the ideas originally presented
in [2,4] and [12] for P|prec, pj = 1|Lmax. Each of these three modifications, together with Algorithm IP, gives rise to a
scheduling algorithm. A schedule, constructed by the algorithm based on the modification of the idea in [2], will be denoted
σ BGJ ; a schedule, constructed by the algorithm based on the modification of the idea in [4], will be denoted σ GJ ; finally, a
schedule, constructed by the algorithm based on the modification of the idea in [12], will be denoted σ ZR.

Section 4 provides insight into the structure of these schedules and any other schedules which may be constructed by
algorithms with certain similar properties. Section 4 also presents a performance guarantee for the algorithm, originating
from the idea in [12],
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is estimated in terms of the optimal maximum lateness Lmax (σ ∗), computed for an optimal schedule σ ∗. It

isworth noting that, although the preemptions are allowed only at integer points in time, the expression for the performance
guarantee is exactly the same as in [13] where no restrictions on preemptions have been imposed.

Section 5 presents another two performance guarantees
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where σ ∗ is an optimal schedule and l is the length of the longest chain in the partially ordered set of tasks, defined as
follows. A chain is a set of tasks S ⊆ N such that for all j ∈ S and g ∈ S either j → g or g → j. The length of a chain
S is


j∈S pj. It is worth noting that, although all three scheduling algorithms developed and analysed in this paper are

polynomial-time algorithms, the derivations of the performance guarantees (1) and (2) are achieved by a non-polynomial
conversion to P|prec, pj = 1|Lmax.

2. Algorithm IP

For any scheduleσ , any task j and any point in time t , the remaining processing time of task j in scheduleσ will be denoted
by pj(t, σ ). In other words, pj(t, σ ) is the difference between pj and the amount of processing time that j has received until
time t in schedule σ . The algorithms in [7,5] and [13] are based on the following approach: each task j is assigned a constant
µj, and then the tasks are scheduled in such a manner that, when tasks compete for machine time at a point in time t , a task
with larger pj(t, σ ) + µj is considered to have a higher priority. It is important to note that these µ’s are byproducts of the
algorithms considered, and are not a part of the problem instance to be solved.

All the above mentioned algorithms are comprised of two components — the method of calculating µ’s and the method
of constructing a schedule using pj(t, σ ) + µj as a priority of task j in schedule σ at time t . Algorithm IP, described in this
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