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a b s t r a c t

This paper focuses on the resolution of the capacitated minimum cost flow problem on a
network comprising n nodes and m arcs. We present a method that counts impervious-
ness to degeneracy among its strengths, namely the minimum mean cycle-canceling algo-
rithm (MMCC). At each iteration, primal feasibility ismaintained and the objective function
strictly improves. The goal is towrite a uniform and hopefullymore accessible paperwhich
centralizes the ideas presented in the seminal work of Goldberg and Tarjan (1989) as well
as the additional paper of Radzik and Goldberg (1994) where the complexity analysis is re-
fined. Important properties are proven using linear programming rather than constructive
arguments.

Wealso retrieve Cancel-and-Tighten from the former paper,where each so-called phase
which can be seen as a group of iterations requires O(m log n) time. MMCC turns out to be
a strongly polynomial algorithm which runs in O(mn) phases, hence in O(m2n log n) time.
This new complexity result is obtained with a combined analysis of the results in both
papers along with original contributions which allows us to enlist Cancel-and-Tighten as
an acceleration strategy.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper addresses the resolution of the capacitated minimum cost flow problem (CMCF) on a network defined by
n nodes and m arcs. We present the minimum mean cycle-canceling algorithm (MMCC). The seminal work of Goldberg and
Tarjan [13], as presented in the book of Ahuja et al. [1], aswell as the paper of Radzik andGoldberg [17],where the complexity
analysis is refined, are the underlying foundations of this document. The current literature states that MMCC is a strongly
polynomial algorithm that performs O(m2n) iterations, a tight bound, and runs in O(m3n2) time.

While Goldberg and Tarjan [13] present Cancel-and-Tighten as a self-standing algorithm, we feel it belongs to the realm
of acceleration strategies incidentally granting the reduction of the theoretical complexity. Our understanding is that this
strategy can be shared at any level of the complexity analysis. Indeed, its very construction aims to assimilate the so-called
notion of phase which can be seen as a group of iterations. This strategy exploits an approximation scheme to manage this
assimilation and as such nevertheless necessitates a careful analysis. We propose a new approximation structure which
allows us to reduce the global runtime to O(m2n log n). It is namely the product of a refined analysis that accounts for O(mn)
phases, each one requiring O(m log n) time.

The reader should view this work as muchmore than a synthesis. It is the accumulation of years of research surrounding
degeneracy that led us to realize the ties with theories drafted some forty years ago.We not only hope to clarify the behavior
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of theminimummean cycle-canceling algorithm but also provide strong insights about the ins and outs of its idiosyncrasies
and more importantly establish a solid unified framework against which we can rest current and future work. On that note,
let us underline the linear programming mindset which simplifies the construction of one of the most important parts
of the algorithm, namely the pricing problem. The justification of some of its properties also benefit from straightforward
implications provided by thatmindset. Some fundamental properties of network problems are also incorporated throughout
the text which sometimes facilitate if not, certainly enlighten, the comprehension of the proofs presented by the listed
authors.

The paper is organized as follows. The elaboration of MMCC takes place in Section 2 where the combination of the so-
called residual network along with optimality conditions give birth to a pricing problem which is put to use in an iterative
process. Section 3 analyzes its complexity which is decomposed in two parts: the outer loop and the bottleneck. Although
the latter comes at the very last, it acts as the binding substance of the whole paper. It is indeed where the behavior of
the algorithm can be seen at a glance alongside the justification for the significance of the aforementioned phases. This is
followed by the conclusion in Section 4.

2. Minimummean cycle-canceling algorithm

Consider the formulation of CMCF on a directed graph G = (N, A), where N is the set of n nodes associated with an as-
sumedbalanced set bi, i ∈ N , of supply or demanddefined respectively by a positive or negative value such that


i∈N bi = 0,

A is the set of m arcs of cost c := [cij](i,j)∈A, and x := [xij](i,j)∈A is the vector of bounded flow variables:

z∗
:= min


(i,j)∈A

cijxij

s.t.


j:(i,j)∈A

xij −


j:(j,i)∈A

xji = bi, [πi] ∀i ∈ N (1)

0 ≤ ℓij ≤ xij ≤ uij, ∀(i, j) ∈ A,

where π := [πi]i∈N is the vector of dual variables, also known as node potentials. When right-hand side b := [bi]i∈N is the
null vector, formulation (1) is called a circulation problem.

Let us enter the world of network solutions with a fundamental proposition whose omitted proof traditionally relies
on a constructive argument. It is so rooted in the network design that, case in point, straightforward derivatives are used
throughout this document.

Proposition 1 (Ahuja et al. [1, Theorem 3.5 and Property 3.6]). Any feasible solution x to (1) can be represented as a combination
of paths and cycles flows (though not necessarily uniquely) with the following properties:

(a) Every directed path with positive flow connects a supply node to a demand node; at most n + m directed paths and cycles
have non-zero flow among which at most m cycles.

(b) In the case of a circulation problem, by definition there are no supply nor demand nodes, which means the representation can
be restricted to at most m directed cycles.

This section derives MMCC, devised to solve instances of CMCF, in the following manner. Section 2.1 defines the corner
stone of the resolution process, namely the residual network.Whether its inception goes back to the optimality conditions or
its usage came as an afterthought is an enigma for whichwe have no answer. Either way, the latter are introduced thereafter
and pave the way for the pricing problem in Section 2.2. Section 2.3 exhibits the algorithmic process which is ultimately
information sharing between a control loop and a pricing problem. The former ensures primal feasibility while the latter
provides a strictly improving direction at each iteration. Section 2.4 illustrates the behavior of the algorithmon themaximum
flow problem.

2.1. Residual network and optimality conditions

The residual network takes form with respect to a feasible flow x0 := [x0ij](i,j)∈A and is denoted G(x0) = (N, A(x0)). As
eloquently resumed in Fig. 1, each arc (i, j) ∈ A is replaced by two arcs representing upwards and downwards possible flow
variations:

• arc (i, j) with cost dij = cij and residual flow 0 ≤ yij ≤ r0ij := uij − x0ij;
• arc (j, i) with cost dji = −cij and residual flow 0 ≤ yji ≤ r0ji := x0ij − ℓij.

Denote A′
:= {(i, j)∪(j, i) | (i, j) ∈ A} as the complete possible arc support of any residual network. The residual network

G(x0) consists of only the residual arcs, i.e., those with strictly positive residual capacities, that is, A(x0) := {(i, j) ∈ A′
| r0ij >

0}. The combination of the current solution x0 along with the optimal marginal flow computed on the residual network is
optimal for the original formulation. Indeed, the residual network with respect to x0 corresponds to the change of variables
xij = x0ij + (yij − yji), ∀(i, j) ∈ A. Observe that traveling in both directions would be counterproductive and can be simplified
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