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a b s t r a c t

Protected module architectures (PMAs) are isolation mechanisms of emerging processors
that provide security building blocks for modern software systems. Reasoning about these
building blocks means reasoning about elaborate assembly code, which can be very
complex due to the loose structure of the code. One way to overcome this complexity is
providing the code with a well-structured semantics. This paper presents one such
semantics, namely a fully abstract trace semantics, for an assembly language enhanced
with PMA. The trace semantics represents the behaviour of protected assembly code with
simple abstractions, unburdened by low-level details, at the maximum degree of
precision. Furthermore, it captures the capabilities of attackers to protected code and
simplifies the formulation of a secure compiler targeting PMA-enhanced assembly
language.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Emerging processors, such as the Intel SGX [1], provide isolation mechanisms as software security building blocks. These
are used to withstand low-level attackers who, generally through injected assembly code, can read the whole memory space
and can thus access secrets in memory, violate integrity constraints and so on. When these isolation mechanisms are in
place, attackers cannot directly violate security properties of isolated software since the isolated memory is not accessible to
them. Examples of these protection mechanisms are protected module architectures (PMAs) [1–7], which enforce security
properties at process or lower levels (Ring �1). With PMA, the software to be secured is placed in a protected memory
partition (a protected module) that shields it from the surrounding, potentially malicious code. The malicious code can
neither read nor write the protected memory; it can only jump to specific addresses in protected memory in order to call
functions of the protected code. Thus, PMA makes software more resilient against low-level attackers. However, this does
not prevent an attacker from violating security properties of protected code by interacting with it.

Describing the interaction between protected and unprotected code or (dually) of an attacker to protected code can be
done by using contextual equivalence. However, while being precise, contextual equivalence is notoriously difficult to
reason about [8]. An alternative characterisation of the behaviour of protected code has the form of fully abstract trace
semantics. Such a semantics uses simple abstractions to represent the behaviour of protected assembly code, unburdened by
low-level details, while remaining at the maximum degree of precision. Dually, it models the behaviour of attackers to
protected code, since it captures precisely the capabilities of those attackers.
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The fully abstract trace semantics has the following benefits. Firstly, it allows contextual equivalence to be disregarded,
since contextual and trace equivalences are proven to be equally precise. The full abstraction property ensures that traces
express precisely all the capabilities of an attacker. Without the trace semantics, the capabilities of an attacker towards
protected code are expressed by means of contexts: complex sequences of assembly instructions. With the trace semantics,
the capabilities of that attacker are captured via the simple notion of traces, which provide a clearer abstraction than
contexts.

Secondly, the fully abstract trace semantics fulfils the claims of recent secure compilation works targeting PMA-enhanced
assembly languages. Given two programs C1 and C2 written in a language L, indicate their compilation to an assembly
language with C↓

1 and C↓
2 respectively. One way of proving the compilation scheme secure is formally stated as

C1CC2 ⟺ C↓
1CC↓

2 [9]. The more complex direction of this proof is C1CC2 ) C↓
1CC↓

2, but it can be simplified by adopting
a fully abstract trace semantics for the assembly language, as in the works of Agten et al. [10] and Patrignani et al. [11,12].
These works presented secure compilers to PMA-enhanced assembly code that depend on the assembly language having a
fully abstract trace semantics such as one of those presented in this paper.

Finally, the trace semantics allows some limitations of the aforementioned secure compilers to be forgone. Currently,
securely-compiled function calls can have a number of parameters based on what the registers allow. To overcome this
limitation (or to pass large data that does not fit in a register value), additional parameters can be spilled on the stack in
unprotected memory. To allow this spilling, the trace semantics needs to capture reading and writing outside of the
protected memory. While none of the previous did, the trace semantics of this paper considers both operations.

This paper initially presents the PMA protection mechanism and informally describes how to devise a fully abstract trace
semantics for PMA-enhanced assembly code (Section 2). Then it introduces Aþ I: an assembly language enhanced with PMA
(Section 3). This paper then investigates how different operations across PMA boundaries are supported by trace semantics.
It explores the design space of trace semantics for Aþ I and presents two different fully abstract trace semantics for it
(Section 4): one where cross-boundary operations are restricted to function calls (Section 4.1) and one where they are
unrestricted (Section 4.2). This paper extends the authors’ previous work [13] by considering additional behaviour in traces
in the form of protected code reading unprotected memory (whose complications are explained in Section 2.2). This paper
then provides a general strategy to simplify the proof of full abstraction of the trace semantics (Section 5). Finally, it reviews
related work (Section 6) and concludes (Section 7). Limitations of this work are threefold. Firstly, the trace semantics cannot
express side-channel attacks. Secondly, the formalisation does not consider details of the architecture such as caches; yet
this is a commonly found assumption [10,11,14,15]. Thirdly, the second trace semantics relies on an assumption on the
partitioning of unprotected code that is not readily fulfilled by certain PMA implementations; Section 7 discusses this
limitation.

2. Protected programs and trace semantics

This section describes the PMA memory access control mechanism and the behaviour of Aþ I code (Section 2.1). Then it
discusses the pitfalls to avoid in order to obtain a fully abstract trace semantics for Aþ I code (Section 2.2).

2.1. The PMA protection mechanism, informally

The assembly language is enhanced with a protected module architecture (PMA). This isolation mechanism enforces a
fine-grained, program counter-based memory access control mechanism [2–7]. We review this mechanism from the work of
Strackx and Piessens [6], upon which our results are based. The techniques presented in this paper can nevertheless be
easily adapted to reasoning about other isolation mechanisms [2,3,5]. The protection mechanism provides a secure
environment for running code that must be protected from the code it interacts with. This mechanism assumes that the
memory is logically divided into a protected and an unprotected partition. The protected partition is further divided into a
read-only code and a non-executable data section. The code section contains a variable number of entry points: the only
addresses where instructions in unprotected memory can jump to and execute. The data section is accessible only from the
protected partition. Based on the location of the program counter, instructions that violate the access control policy cause
the execution to halt [10,11].

The table below summarises the access control model enforced by PMA.

FromZto Protected Unprotected

Entry point Code Data

Protected r x r x r w r w x
Unprotected x r w x

Following are some code snippets that exemplify how the PMA access control mechanism works, and, introduce the
syntax of the Aþ I along the way. All Aþ I examples throughout the paper assume the presence of a protected memory
section spanning from address 100 to 200, with a single entry point at address 100. In the examples, call the code located in
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