Available online at www.sciencedirect.com

&

, _ COMPUTATIONAL
ScienceDirect STATISTICS
& DATA ANALYSIS

= BLses
ELSEVIER Computational Statistics & Data Analysis 52 (2007) 1132—1142

www.elsevier.com/locate/csda

Local influence assessment in heteroscedastic
measurement error models

Mario de Castro®*, Manuel Galea—Rojasb, Heleno Bolfarine®

&nstituto de Ciéncias Matemdticas e de Computagdo, Universidade de Sdo Paulo, Caixa Postal 668, 13560-970, Sdo Carlos-SP, Brazil
YUniversidad de Valparaiso, Casilla 5030, Valparaiso, Chile
CInstituto de Matemdtica e Estatistica, Universidade de Sdo Paulo, Caixa Postal 66281, Ag. Cidade de Sdo Paulo, 05311-970, Sdo Paulo-SP, Brazil

Available online 17 May 2007

Abstract

Functional heteroscedastic measurement error models are investigated aiming to assess the effects of perturbations of data on
some inferential procedures. This goal is accomplished by resorting to methods of local influence. The techniques provide to the
practitioner a valuable tool that enables to identify potential influential elements and to quantify the effects of perturbations in these
elements on results of interest. An illustrative example with a real data set is also reported.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Heteroscedastic measurement error models have received attention in the literature (see Fuller, 1987; Ripley and
Thompson, 1987; Riu and Rius, 1996; Galea-Rojas et al., 2003; de Castro et al., 2004; Kukush and Van Huffel, 2004;
de Castro et al., 2006a; Markovsky et al., 2006, among others). These works concentrate on parameter estimation and
hypothesis testing. de Castro et al. (2006b) develop a local influence study, but they cover solely test statistics in a
simple model (one response).

The chief aim of the present paper is the assessment of effects of minor perturbations of data on inferential results.
To accomplish this goal we resort to methods of local influence. The roots of these methods are in the assessment
of the individual impact of observations in a global sense, that is, an observation is either included or deleted in the
analysis. There are three major points. First, meaningful perturbation schemes should be choosen in advance. Second,
a selection of which particular aspects (for instance, parameter estimates) will be tracked under the perturbations. At
last, an objective criterion to quantify the effects of perturbations.

The remaining of the paper is organized as follows. Besides the formulation of the working model, for the sake of
completeness, maximum likelihood (ML) parameter estimation and hypothesis testing (as in de Castro et al., 2004) are
sketched. Next, we provide a short account of the local influence assessment methodologies proposed by Cook (1986),
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Wu and Luo (1993), and Cadigan and Farrell (2002), followed by the necessary matrices to implement some selected
perturbation schemes. An illustrative example with a real data set is also reported.

2. Model and inference

Let n be the sample size; X;, the unidimensional observed value of the covariate in unit i; Y;;, the unidimensional jth
observed response in unit i and x;, the unobserved (true) covariate value for unit i. Relating these variables we postulate
as working model the relations

Xi=x; +u; (D
and
Yij =+ Bjxi + eij, 2)

i=1,...,nand j=1,...,r. As an instance, this model is applicable to the comparison of measurement methods
problem (Ripley and Thompson, 1987; Riu and Rius, 1996; Galea-Rojas et al., 2003; de Castro et al., 2004, among
others). In this case, r is the number of methods to be compared to a reference one. Letting e; = (e;1, . . ., e,'r)T, we
assume that e; is independent of u; and are distributed as

indep.
i)~ N0, D)), 3)
i=1,...,n, where ®; = D(x;, 4;) denotes a diagonal matrix with elements ; and 4; = (41, ..., )ti,)T. Expression
(3) specifies the distribution of the (r + 1)-dimensional vector of measurement errors. We suppose that the variances ;
and 4; are known and greater than 0,7 =1, ..., n, a common setup in areas such as Analytical Chemistry (Ripley and
Thompson, 1987; Riu and Rius, 1996), Earth Science (Russell et al., 2000), Geochemistry (Maruyama and Yurimoto,
2003), and Water Science (Bertrand-Krajewski, 2004), to name just a few.
The model defined by Egs. (1)—(2), can be written as
Zi=X, YD) =0.a)" + (LB X + (uin e,

i

where Yie = (Yi1, ..., Yi)) l,i=1,....,n,a=(oy,...,0,) ", and B=, ..., ﬁ,)T. Then, under assumption (3), it
follows that
indep.
Z; ~ Nypi(p;, @),
where p; = (x;, ol +x,~ﬁT)T, i=1,...,n.

The above model is known as a functional errors-in-variables model (Fuller, 1987; Cheng and Van Ness, 1999).
Because no assumption is made on the distribution of the unknown values x;, i = 1, ..., n, they are also parameters
which have to be estimated. Since their number increases with the sample size, they are known as incidental parameters.
As our main interest is on « and f, x1, ..., x, are nuisance parameters. Model (1)—(2) is a particular instance of the

multivariate element-wise weighted total least squares (EW-TLS) (Kukush and Van Huffel, 2004; Markovsky et al.,
2006).

Let@= (', p")T, which is of dimension 2r x 1. The log-likelihood function corresponding to the model defined
by (1) and (2) with assumption (3) can be written as

10.x)=>_1;(0.x), 4)

i=1

where

r+1 1 1
1i(0,x) = 5 log(2m) — 3 log det(®;) — EQ,’(O),
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