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Abstract

The problem of consistent estimation in measurement error models in a linear relation with not necessarily normally distributed
measurement errors is considered. Three possible estimators which are constructed as different combinations of the estimators arising
from direct and inverse regression are considered. The efficiency properties of these three estimators are derived and the effect of
non-normally distributed measurement errors is analyzed. A Monte-Carlo experiment is conducted to study the performance of these
estimators in finite samples.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In a linear measurement error model, the parameters can be estimated consistently only when some additional
information besides the data set is available. There are various ways in which such additional information can be
employed; (see, e.g., Cheng and Van Ness, 1999; Fuller, 1987). Among them, application of the knowledge of all or
one of the measurement error variances is the most prominent approach.

We consider three different combinations of the direct and inverse adjusted least squares (LS) estimators. They
are modelled after analogous combinations found in the literature, where, however, they have been constructed from
non-adjusted direct and inverse LS estimators. Sokal and Rohalf (1981) considered the geometric mean of these two
estimators (which they call the technique of reduced major axis) and Aaronsom et al. (1986) work with the arithmetic
mean. In addition, the slope parameter may be estimated by the slope of the line that bisects the angle between the
direct and inverse regression lines; see, e.g., Pierce and Tully (1988). While all these estimators are not consistent
(although they possibly reduce the bias inherent in their constituent direct and inverse LS estimators), the present paper
constructs consistent estimators by using error adjusted direct and inverse LS rather than non-adjusted direct and inverse
LS estimators. A simple question then arises: which out of these suggested estimators is better under what conditions.
This question has been partly dealt with in Dorff and Gurland (1961), but for a model with replicated observations and
unknown error variances.
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The efficiency properties of all the estimators under consideration are expressed as functions of the reliability ratios
associated with study and explanatory variables, (see, Gleser, 1992, 1993). The asymptotic properties of the estimators
are derived when the measurement errors are not necessarily normally distributed.

The plan of our presentation is as follows. In Section 2, we describe a linear model with measurement errors and
present the estimators of the slope parameter when the error variances are known. Section 3 analyzes the asymptotic
properties of the estimators when the underlying error distributions are not necessarily normal. The finite sample
properties of the proposed estimators under different types of distributions of measurement errors are studied through
a Monte-Carlo experiment in Section 4. Some concluding remarks are offered in Section 5.

2. Model specification and the estimators

Consider a linear measurement error model in which the variables are related by the linear relation

Yj = � + �Xj (j = 1, 2, . . . , n), (1)

where Yj and Xj denote the true but unobserved values of the study and explanatory variables. The observed values
yj and xj are expressible as yj = Yj + uj and xj = Xj + vj , respectively, where uj and vj denote the associated
measurement errors.

We assume that X1, X2, . . . , Xn are independent (not necessarily identically distributed) random variables such
that plimn→∞X̄ and plimn→∞(1/n)

∑
(Xj − X̄)2 > 0 exist, which are denoted by �X and �2

X, respectively. The
measurement errors u1, u2, . . . , un are assumed to be independent and identically distributed with mean 0, variance �2

u,
third moment �1u�

3
u and fourth moment (�2u +3)�4

u. Similarly, the errors v1, v2, . . . , vn are assumed to be independent
and identically distributed with mean 0, variance �2

v , third moment �1v�
3
v and fourth moment (�2v + 3)�4

v . Further, the
random variables (Xj , uj , vj ) are assumed to be jointly independent.

It may be noted that this model comprises the ultrastructural model, see Dolby (1976), which in turn contains the
structural and the functional model as special cases.

Consistent estimation of the parameters � and � in the relationship (1) with the help of given data (xj , yj ), j=1, . . . , n,
is possible only when some additional information is available. This additional information, let us suppose, specifies
the error variances �2

u and �2
v . We can then estimate the slope parameter � consistently by using the knowledge of either

of the two error variances. This provides the following well-known estimators of �:

bd = sxy

sxx − �2
v

and bi = syy − �2
u

sxy

,

where sxx = (1/n)
∑

(xj − x̄)2, syy = (1/n)
∑

(yj − ȳ)2, sxy = (1/n)
∑

(xj − x̄)(yj − ȳ), x̄ = (1/n)
∑

xj , and
ȳ = (1/n)

∑
yj . An estimator using the knowledge of both the error variances is given by

bp = tp +
(

t2
p + �2

u

�2
v

)1/2

tp = 1

2sxy

(
syy − �2

u

�2
v

sxx

)
. (2)

We can combine the two basic estimators bd and bi in various ways. One possibility is to estimate the slope parameter
� by the geometric mean of the estimators bd and bi :

bg = sign(sxy)|bdbi |1/2. (3)

Similarly, we may estimate � by the arithmetic mean of bd and bi :

bm = 1
2 (bd + bi). (4)

Another interesting estimator of � is

bb = tb + (t2
b + 1)1/2 tb = bdbi − 1

bd + bi

, (5)

which is the slope of the line that bisects the angle between the two regression lines specified by bd and bi .
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