The degree resistance distance of cacti

Junfeng Du ${ }^{\text {a }}$, Guifu $\mathrm{Su}^{\text {a }}$, Jianhua $\mathrm{Tu}^{\mathrm{a}, *}$, Ivan Gutman ${ }^{\mathrm{b}, \mathrm{c}}$
${ }^{\text {a }}$ School of Science, Beijing University of Chemical Technology, Beijing 100029, China
${ }^{\text {b }}$ Faculty of Science, University of Kragujevac, P.O. Box 60, Kragujevac, Serbia
${ }^{\text {c }}$ State University of Novi Pazar, Novi Pazar, Serbia

ARTICLE INFO

Article history:

Received 6 November 2014
Received in revised form 18 February 2015
Accepted 24 February 2015
Available online 20 March 2015

Keywords:

Resistance distance
Degree resistance distance
Cactus

Abstract

Graph invariants, based on the distances between the vertices of a graph, are widely used in theoretical chemistry. The degree resistance distance of a graph G is defined as $D_{R}(G)=$ $\sum_{\{u, v\} \subseteq V(G)}[d(u)+d(v)] R(u, v)$, where $d(u)$ is the degree of the vertex u, and $R(u, v)$ the resistance distance between the vertices u and v. Let $\operatorname{Cact}(n ; t)$ be the set of all cacti possessing n vertices and t cycles. The elements of $\operatorname{Cact}(n ; t)$ with minimum degree resistance distance are characterized.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The graphs considered in this paper are finite, loopless, and contain no multiple edges. Given a graph G, let $V(G)$ and $E(G)$ be, respectively, its vertex and edge sets. The ordinary distance $d(u, v)=d_{G}(u, v)$ between the vertices u and v of the graph G is the length of the shortest path between u and v.

The Wiener index $W(G)$ is the sum of ordinary distances between all pairs of vertices, that is, $W(G)=\sum_{\{u, v\} \subseteq V(G)} d(u, v)$. It is the oldest and one of the most thoroughly studied distance-based graph invariants [8,9,25].

A modified version of the Wiener index is the degree distance defined as $D(G)=\sum_{\{u, v\} \subseteq V(G)}[d(u)+d(v)] d(u, v)$, where $d(u)=d_{G}(u)$ is the degree of the vertex u of the graph G. The degree distance was also widely studied [24,1,15,6,7,18-21,31]. Tomescu [19] determined the unicyclic and bicyclic graphs with minimum degree distance. Yuan and An [31] determined the unicyclic graphs with maximum degree distance.

In 1993, Klein and Randić [16] introduced a new distance function named resistance distance, based on the theory of electrical networks. They viewed G as an electric network N by replacing each edge of G with a unit resistor. The resistance distance between the vertices u and v of the graph G, denoted by $R(u, v)$, is then defined to be the effective resistance between the nodes u and v in N. This new kind of distance between vertices of a graph was eventually studied in detail [16,3,4,11,12,23,30,28].

If the ordinary distance is replaced by resistance distance in the expression for the Wiener index, one arrives at the Kirchhoff index

$$
K f(G)=\sum_{\{u, v\} \subseteq V(G)} R(u, v)
$$

which also has been widely studied [2,10,13,22,27,26,32].

[^0]

Fig. 1. The σ-transformation at v.
Similarly, if the ordinary distance is replaced by resistance distance in the expression for the degree distance, then one arrives at the degree resistance distance [14]:

$$
D_{R}(G)=\sum_{\{u, v\} \subseteq V(G)}[d(u)+d(v)] R(u, v) .
$$

Palacios [17] named the same graph invariant "additive degree-Kirchhoff index".
In [14] some properties of D_{R} are determined and the unicyclic graphs with minimum and the second minimum D_{R}-value characterized. Bianchi et al. [5] gave some upper and lower bounds for D_{R} whose expressions do not depend on the resistance distances. Yang and Klein [29] gave formulae for the degree resistance distance of the subdivisions and triangulations of graphs.

A cactus is a connected graph in which any two simple cycles have at most one vertex in common. Equivalently, every edge in such a graph belongs to at most one simple cycle. Denote by $\operatorname{Cact}(n ; t)$ the set of cacti possessing n vertices and t cycles. If $G \in \operatorname{Cact}(n ; t)$, then $|E(G)|=n+t-1$. In this paper, we determine the minimum degree resistance distance among graphs in $\operatorname{Cact}(n ; t)$ and characterize the corresponding extremal graphs.

2. Preliminaries

Let $R_{G}(u, v)$ denote the resistance distance between u and v in the graph G. Recall that [16] $R_{G}(u, v)=R_{G}(v, u)$ and $R_{G}(u, v) \geq 0$ with equality if and only if $u=v$.

For a vertex v in G, we define

$$
K f_{v}(G)=\sum_{u \in G} R_{G}(u, v) \quad \text { and } \quad D_{v}(G)=\sum_{u \in G} d_{G}(u) R_{G}(u, v)
$$

In the above formulas and in what follows, for the sake of conciseness, instead of $u \in V(G)$ we write $u \in G$.
By the definition of $D_{R}(G)$, we also have

$$
D_{R}(G)=\sum_{v \in G} d_{G}(v) \sum_{u \in G} R_{G}(u, v)
$$

Lemma 1 ([16]). Let G be a graph, x be a cut vertex of G and let u, v be vertices belonging to different components which arise upon deletion of x. Then $R_{G}(u, v)=R_{G}(u, x)+R_{G}(x, v)$.

Lemma 2 ([14]). Let G be a connected graph with a cut-vertex v such that G_{1} and G_{2} are two connected subgraphs of G having v as the only common vertex and $V\left(G_{1}\right) \bigcup V\left(G_{2}\right)=V(G)$. Let $n_{1}=\left|V\left(G_{1}\right)\right|, n_{2}=\left|V\left(G_{2}\right)\right|, m_{1}=\left|E\left(G_{1}\right)\right|, m_{2}=\left|E\left(G_{2}\right)\right|$. Then

$$
D_{R}(G)=D_{R}\left(G_{1}\right)+D_{R}\left(G_{2}\right)+2 m_{2} K f_{v}\left(G_{1}\right)+2 m_{1} K f_{v}\left(G_{2}\right)+\left(n_{2}-1\right) D_{v}\left(G_{1}\right)+\left(n_{1}-1\right) D_{v}\left(G_{2}\right)
$$

Let v be a vertex of degree $p+1$ in a graph G, such that $v v_{1}, v v_{2}, \ldots, v v_{p}$ are pendent edges incident with v, and u is the neighbor of v distinct from $v_{1}, v_{2}, \ldots, v_{p}$. We form a graph $G^{\prime}=\sigma(G, v)$ by deleting the edges $v v_{1}, v v_{2}, \ldots, v v_{p}$ and adding new edges $u v_{1}, u v_{2}, \ldots, u v_{p}$. We say that G^{\prime} is a σ-transform of G (see Fig. 1).
Lemma 3 ([14]). Let $G^{\prime}=\sigma(G, v)$ be a σ-transform of the graph $G, d_{G}(u) \geq 1$. Then $D_{R}(G) \geq D_{R}\left(G^{\prime}\right)$. Equality holds if and only if G is a star with v as its center.

Let $G-v$ be the graph obtained from the graph G by deleting its vertex v and all edges incident to v.
Lemma 4. Let u be a vertex of G such that there are p pendent vertices $u_{1}, u_{2}, \ldots, u_{p}$ attached to u. Let v be another vertex of G such that there are q pendent vertices $v_{1}, v_{2}, \ldots, v_{q}$ attached to v. Let

$$
G_{1}=G-\left\{v v_{1}, v v_{2}, \ldots, v v_{q}\right\}+\left\{u v_{1}, u v_{2}, \ldots, u v_{q}\right\}
$$

and

$$
G_{2}=G-\left\{u u_{1}, u u_{2}, \ldots, u u_{p}\right\}+\left\{v u_{1}, v u_{2}, \ldots, v u_{p}\right\} .
$$

Then either $D_{R}(G)>D_{R}\left(G_{1}\right)$ or $D_{R}(G)>D_{R}\left(G_{2}\right)$.

https://daneshyari.com/en/article/418117

Download Persian Version:

https://daneshyari.com/article/418117

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: djfdjf1990@163.com (J. Du), dfnh1983@126.com (G. Su), tujh81@163.com (J. Tu), gutman@kg.ac.rs (I. Gutman).

