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Abstract

A complete Bayesian framework for principal component analysis (PCA) is proposed. Previous model-based approaches to PCA
were often based upon a factor analysis model with isotropic Gaussian noise. In contrast to PCA, these approaches do not impose
orthogonality constraints. A new model with orthogonality restrictions is proposed. Its approximate Bayesian solution using the
variational approximation and results from directional statistics is developed. The Bayesian solution provides two notable results
in relation to PCA. The first is uncertainty bounds on principal components (PCs), and the second is an explicit distribution on the
number of relevant PCs. The posterior distribution of the PCs is found to be of the von-Mises–Fisher type. This distribution and its
associated hypergeometric function, 0F1, are studied. Numerical reductions are revealed, leading to a stable and efficient orthogonal
variational PCA (OVPCA) algorithm. OVPCA provides the required inferences. Its performance is illustrated in simulation, and for
a sequence of medical scintigraphic images.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Principal component analysis (PCA) is one of the classical data analysis tools for dimensionality reduction. It is
used in many application areas including data compression, de-noising, pattern recognition, shape analysis and spectral
analysis. For an overview of its use, see Jolliffe (2002).

PCA is often used as a black box numerical tool, because of its mature numerical implementation and ease of
use. The correspondence between principal components (PCs) and the eigenvectors of a symmetric matrix makes it
intuitively appealing. However, further investigation of PCs—namely the choice of an optimal number of relevant
PCs and confidence intervals on the PCs—is complicated. Many approximate solutions are available, both formal and
ad hoc (Anderson, 1971; Jolliffe, 2002, Chapter 6 and Section 3.6). Simple ad hoc criteria are used in applications
such as data compression and de-noising, where the number of PCs is restricted by an available bit rate or computational
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cost, rather than by statistical relevance. However, formal solutions are required in applications where uncertainty of
estimates is an important part of the problem. A typical example is spectral analysis (Kay, 1993) or functional analysis
of dynamic image data (Buvat et al., 1998).

Traditionally, probability distributions for PCs were derived using sampling theory (Jolliffe, 2002), but these results
are mostly asymptotic. Recently, the problem was addressed using Bayesian methodology (Bishop, 1999), by invoking
the factor analysis (FA) model with isotropic Gaussian noise. However, the FA model does not impose orthogonality
restrictions, and so the posterior inferences are not identical to PCA. Moreover, rotational ambiguity in the FA model
presents a computational difficulty that must be overcome by means of regularizing priors.

The original concept of PCA (Section 2) as well as probabilistic models which yield a maximum likelihood (ML)
solution identical to that of PCA (Section 3) are reviewed. The ML solution does not provide an estimate of rank
nor uncertainty bounds for the model estimates. Therefore, the problem is reformulated using the Bayesian method-
ology (Section 4). A variational approximation of the posterior distribution is investigated, and a numerically effi-
cient algorithm—orthogonal variational PCA (OVPCA)—for estimation of an approximating posterior distribution
is presented (Section 5). Further analysis yields both the distribution of rank as well as uncertainty bounds on PCs
(Section 6). The performance of the method is illustrated using a simple simulation study. A contemporary applica-
tion in medical imaging is also presented (Section 7). The posterior distribution of PCs is found to be in the form of
the von-Mises–Fisher distribution. This is a matrix normal distribution with orthogonality restrictions on the matrix
argument. Hence, the support of the distribution is confined to a Cartesian product of a set of hyperballs, known as
the Stiefel manifold. For convenience, the key results for this distributional class are reviewed in Appendix A. The
numerical efficiency of the OVPCA technique depends on the approach taken to evaluating the involved hypergeometric
function of matrix argument, 0F1. A novel approximation of this function—yielding results of acceptable accuracy and
computational cost—is presented in Appendix B.

The following notational conventions are used:

A ∈ Rn×m; ai matrix of dimensions n × m, generally denoted by a capital letter; its ith column, using
bold-faced letter.

A = UALAV ′
A singular value decomposition (SVD) of matrix A ∈ Rn×m, where UA ∈ Rn×q , LA ∈ Rq×q ,

VA ∈ Rm×q , q = min(n, m). The SVD is expressed in short form, i.e. in terms of the only
guaranteed-non-zero part of LA, namely the upper-left q × q diagonal submatrix.

U;r , UA;r operator selecting the first r columns of matrix U, UA, respectively.
L;r,r , LA;r,r operator selecting the r × r upper-left subblock of matrix L, LA, respectively.
l;r , lA;r operator extracting upper length-r subvector of vector l, lA, respectively.
f (x|�) probability density function (pdf) of continuous random variable x, conditioned by

known �.
�̂ maximizer of f (x|�), with latter taken as a function of � (the ML estimate).

2. Principal component analysis (PCA)

PCA is a widely used tool (Jolliffe, 2002) for representation of data sets. Consider a set of n p-dimensional data
vectors, di , from data space D:

D = [d1, . . . , dn], di ∈ D =Rp.

For simplicity, the sample mean vector 〈d〉n = (1/n)
∑n

i=1 di is assumed to be zero. If 〈d〉n �= 0, it can be subtracted
from the raw data in a preprocessing step. Explicit modelling of the sample mean is discussed in Section 7.3. We also
assume, without loss of generality, that p�n.

Let Pr be the orthogonal projection operator from D into the r-dimensional subspace, Ar , with orthonormal basis
Wr = [w1, . . . , wr ] ∈ Rp×r :

Pr : D → Ar ,

di → mi .
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