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ABSTRACT
Cognitive neuroscientists sometimes apply formal models to investigate how the brain implements cognitive
processes. These models describe behavioral data in terms of underlying, latent variables linked to hypothesized
cognitive processes. A goal of model-based cognitive neuroscience is to link these variables to brain measurements,
which can advance progress in both cognitive and neuroscientific research. However, the details and the
philosophical approach for this linking problem can vary greatly. We propose a continuum of approaches that differ
in the degree of tight, quantitative, and explicit hypothesizing. We describe this continuum using four points along it,
which we dub qualitative structural, qualitative predictive, quantitative predictive, and single model linking
approaches. We further illustrate by providing examples from three research fields (decision making, reinforcement
learning, and symbolic reasoning) for the different linking approaches.
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In recent years, cognitive neuroscientists have applied formal,
computational cognitive models to more effectively under-
stand how the brain implements cognitive processes such as
decision making, reinforcement learning, and symbolic rea-
soning. Such formal cognitive models can decompose effects
in behavioral data by description in terms of underlying latent
cognitive processes and associated variables. Model-based
cognitive neuroscience links these variables to brain measure-
ments. This approach can, on the one hand, constrain the
development of cognitive models, while, on the other hand,
also refine models that explain how cognitive processes are
implemented in the brain (1). Linking brain measurements to
psychological constructs has been conceptualized as identi-
fying a bridge locus: to link some mental capacity to a neural
substrate (2,3). A researcher can identify bridge loci by
empirically testing probable linking hypotheses. An example
of a linking hypothesis is that the ventral striatum represents
how much reward a subject expects during a task.

The scope of this article is limited to the neural linking of
computational cognitive models and excludes (much more
common) conceptual verbal theories of cognition. A main
strength of computational models of cognition over verbal
theories is that they force the modeler to be explicit and
precise in his or her assumptions about cognition. This
reduces the potential for miscommunication and misunder-
standing of what a cognitive theory entails and reduces the
potential for vague statements that are hard to test empirically
(4–6). Additionally, because of their quantitative nature, com-
putational cognitive models offer the possibility of assigning
hard numbers to abstract cognitive concepts like response

caution or learning rate. These numbers allow the integration
of cognitive theory with quantitative neural data in a statistical
framework. Ultimately, we believe that this quantitative, stat-
istical approach can bring us much tighter integration between
the cognitive and neural domain than verbal theories, support-
ing more stringent tests of the theories and of the links
between neural and behavioral data.

Marr (7) famously subdivided the problem of understanding
how the brain works into three levels: 1) a computational level
that describes what computational problem a brain aims to
solve in a given context, 2) an algorithmic level that describes
how the problem can be solved, and 3) an implementational
level that describes how this algorithm can physically be
performed. Linking cognitive models to neural data can inform
theories at all three levels.

For example, at the algorithmic level, cognitive models of
speeded decision making make clear predictions about how
subjects can lower the distance an evidence accumulator has
to travel from the start of a trial to the end. However, for many
models, it is not possible to investigate whether this is
achieved by increasing the starting point or the finishing
threshold of the accumulator with only behavioral data.
Clearly, neural data can help to distinguish between these
different algorithms and need to carefully be related to the
cognitive models that are successful in explaining behavior
(5,8).

Similarly, more elaborate explanations at the implementa-
tional level are only possible with a firm understanding of what
problem the brain is actually solving and what strategies are
possible. This point is made again in Marr’s original proposal
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of the three levels and also eloquently put in the following
analogy of David A. Robinson (9): “Trying to understand
perception by studying only neurons is like trying to under-
stand bird flight by studying only feather: it just cannot be
done. In order to understand bird flight, we have to understand
aerodynamics; only then do the structure of feathers and the
different shapes of birds’ wings make sense.” We believe that
this calls for the linking of cognitive models, which explain how
the computational problems with which the brain is faced can
be solved, to neural data, which are rooted in the physical
substrate of these algorithms.

Another advantage of linking cognitive models to neural
data might be the sheer wealth of additional information that
neural data can provide in comparison with behavioral data.
By any measure, the amount of information in behavioral data
is extremely limited. Because many behavioral experiments
provide not much more than choices and reaction times,
literally all the data of a behavioral experiment can usually be
summarized in a few hundred (only choice) up to a few
thousand bytes (also reaction times). Compare that with
ultra-high-resolution functional magnetic resonance imaging
(fMRI) data from 7 tesla magnetic resonance scanners, which
can easily occupy a few billion bytes per subject. Of course,
the picture is more complicated than this: the neural data are
much more ambiguous. However, recent efforts in sequential
sampling models as well as models of value-based learning
have taught us that to reliably estimate the parameters of more
complicated cognitive models and dissociate between differ-
ent versions of them, the amount of information of most
behavioral datasets is very limited (10,11). Thus, even dis-
regarding the conceptual benefits, cognitive modelers should
welcome the practical benefits arising from the wealth of extra
information in neural data, as they provide an opportunity to
develop richer models of cognition than has been possible
so far.

But how do we link cognitive models to functional brain
measurements most effectively? In the past decade, param-
eters of formal cognitive models have been linked to many
measures of neural activity, such as electroencephalography
(EEG), fMRI, and single-cell recordings. These studies
employed wildly varying approaches, connecting variability in
behavior and brain measurement at the level of subjects,
conditions, and even trials. In some studies, cognitive models
were used to set up testable hypotheses about brain activity.
In other studies, cognitive model parameters were directly
correlated against measurement models of neural data, after
both models were fit to their respective data domain. Some
studies made a single model of both brain and behavior and
tried to predict both at the same time.

In this review, we aim to provide a particular taxonomy of
possible methods of linking neural data to cognitive models.
We think this taxonomy is useful to describe the work that has
been done so far and understand how it has progressed.
Additionally, it offers cognitive neuroscientists a set of handles
on where to start when linking neural data to cognitive models,
as well as what to strive for in the long run (see also the
Discussion).

We then give some examples of the four categories of
linking in three subfields of cognitive neuroscience from the

literature. A larger review of the literature can be viewed in
Supplement 1.

Finally, we will discuss the strengths and weaknesses of
different points on the continuum and lay out future challenges
and developments.

LOOSER AND TIGHTER LINKS

There are many approaches to linking formal models of
cognition to neural data. These approaches differ in how
explicit and precise the link is made between neural,
physiological processes on the one hand and cognitive,
phenomenal processes on the other hand. We propose a
continuum of tightness of linking. At the loosest level,
cognitive models can be linked with neural data simply by
constraining the kinds of structural assumptions allowed in
the models in order to respect data about neural structures.
Tighter links can be created by comparison of predictions for
neural and behavioral data or neural and behavioral model
parameters. The very tightest and most explicit links are
specified by joint models, which make quantitative predic-
tions about both neural and behavioral data at the
same time.

Table 1 provides some illustrative examples that are
elaborated below. These examples highlight four commonly
used points on the continuum between loose to tight linking.
We first provide definitions for the four different commonly
used levels of linking. Following that, we give detailed
examples of these approaches in practice, with each level of
linking illustrated in up to three different research domains:
perceptual decision making, reinforcement learning, and sym-
bolic reasoning.

Qualitative Structural Linking

Neural data on the structure of the brain are used to
constrain the structure of a cognitive model. An example of
this is the leaky competing accumulator (LCA) model:
“The principles included in the modeling effort have neuro-
biological as well as computational or psychological moti-
vation, and the specific instantiations of the principles
are informed by additional neurophysiological observations”
(12).

Qualitative Predictive Linking

A cognitive model is tested using qualitative predictions about
both neural and behavioral data. For example, Borst et al. (13)
used the symbolic reasoning modeling framework of Adaptive
Control of Thought-Rational (ACT-R) to make predictions
about the difference in fMRI signals between conditions that
differed in behavioral measures associated with task difficulty
separately for different brain regions: “The model does not
predict a general increase in BOLD [blood oxygen-level
dependent] response with task difficulty; instead, it predicts
lower but more persistent activation levels for the more difficult
conditions in the visual and manual modules, and higher and
more persistent activation levels for the more difficult con-
ditions in the problem state and declarative memory modules”
(13).

Linking Behavioral and Neural Data
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