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Abstract

A novel concept for estimating smooth functions by selection techniques based on boosting is developed. It is suggested to put
radial basis functions with different spreads at each knot and to perform selection and estimation simultaneously by a componen-
twise boosting algorithm. The methodology of various other smoothing and knot selection procedures (e.g. stepwise selection) is
summarized. They are compared to the proposed approach by extensive simulations for various unidimensional settings, including
varying spatial variation and heteroskedasticity, as well as on a real world data example. Finally, an extension of the proposed method
to surface fitting is evaluated numerically on both, simulation and real data. The proposed knot selection technique is shown to be a
strong competitor to existing methods for knot selection.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the last decades, a tremendous amount of methods has been developed for the estimation of smooth functions f
in an unidimensional regression setting y = f (x) + �. Besides localized approaches (see e.g. Fan and Gijbels, 1996),
one distinguishes between methods based on smoothing splines or regression splines. The former (see Eubank, 1988
or Wahba, 1990) uses many knots (up to the sample size n) which are placed in the design space, and the roughness of
the estimate is controlled by a specific penalty term. The latter, on which we will focus in the present paper, is based
on an expansion of f into basis functions, f =∑

�jBj . In this setting, the number of actually chosen knots is much
less than n. To avoid overfitting, one uses penalization strategies (P-splines, see Eilers and Marx, 1996) as well as knot
selection strategies which are based on well-known variable selection techniques. Stone et al. (1997) and He and Ng
(1999) use stepwise selection, whereas Osborne et al. (1998) propose knot selection by Lasso (see Tibshirani, 1996).
Knot selection from a Bayesian perspective has been treated by Smith and Kohn (1996), Denison et al. (1998) and
Lang and Brezger (2004).

In the present paper, we aim at knot selection by employing recent developments in variable selection based on
boosting techniques. Bühlmann and Yu (2003) propose a boosting algorithm constructed from the L2-loss, which
is suitable for high dimensional predictors in an additive model context. Bühlmann (2006) extends L2 Boost to the
special issue of fitting high-dimensional linear models, where the number of covariates may exceed the sample size.
This approach can straightforwardly be adapted to a regression spline context. It is possible to work with a very high
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number of basis functions, which are selected componentwise in a stepwise fashion. In order to obtain high flexibility
in the resulting fits, we recommend to use radial basis functions (e.g. Ripley, 1996) with spreads chosen data-adaptively
by componentwise boosting. As simulation will show, this leads to superior performance for the estimation of functions
with high spatial variation as well as to robustness against violations of model assumptions.

The outline of the paper is as follows: in Section 2, we give an outline of the boosting algorithm. Section 3 contains
a brief review over some alternative smoothing methods. The procedures are compared by a simulation study in the
style of Wand (2000). In Section 4, the approach is extended to surface fitting.

2. A smoothing procedure based on componentwise L2-boosting

We consider the problem of conventional unidimensional nonparametric regression. For a dependent variable yi and
a covariate xi , i = 1, . . . , n, the model

yi = f (xi) + � (xi) �i , �i ∼ N(0, 1) (1)

is assumed, where f (.) is a smooth function and �(.) is a positive function. A very popular approach to this problem
is the expansion of f into basis functions, i.e.

f (xi) = �0 +
m∑

j=1

�jBj (xi) , (2)

where the �j are unknown coefficients, m is the number of knots and Bj denote the basis functions. Basis functions
that have often been used in the literature are e.g. the truncated power series basis (see Ruppert and Carroll, 2000 or
Wand, 2000), the B-spline basis (Eilers and Marx, 1996) and the natural spline basis (Green and Silverman, 1994).
Alternative basis functions that are suggested in the neural network community are the so-called radial basis functions
(e.g. Ripley, 1996). An example for the latter are localized Gaussian densities, given by

Bj (x) = exp

(
−
∣∣x − �j

∣∣2
2h2

)
, (3)

where �j is the center of the basis function, and h determines the spread.
In the following, we will focus on radial basis functions, since they have some properties which are useful for the

proposed procedure based on componentwise boosting. First, if we assume a sequence of knots
{
�j

}m
j=1, the Bj (x) as

given in (3) are only linked to one knot �j . Furthermore, radial basis functions provide support on the entire real line.
In contrast, B-splines—which are widely-used due to their numerical stability—are determined by q + 2 knots if they
are of degree q. They have local support, i.e. they take values greater than 0 only on q + 2 consecutive knots. This
implies for knot selection that the whole B-spline basis has to be recomputed, if a certain knot is added or deleted. It
entails further a re-estimation of all coefficients.

The use of basis functions as given in (3) raises the question how to choose the spread h appropriately. A simple
concept would be to take the same h at each knot, and to determine it e.g. by a data driven choice. However, this
strategy is doubtful if one aims at constructing a flexible smoothing procedure, which should also be able to handle
the estimation of functions with high spatial variation (see for example Ruppert and Carroll, 2000). We suggest to put
at each knot �j , j = 1, . . . , m, several radial basis functions with different spread h. Suppose we have a sequence of r
distinct spread variables h1 < · · · < hr , then the expansion into basis functions from (2) is given as

f (xi) = �0 +
m∑

j=1

r∑
k=1

�jkBjk (xi) , (4)

where Bjk (xi) = exp
(
−∣∣xi − �j

∣∣2/ 2h2
k

)
. From (4), it is seen that the number of parameters is large, if the number

of knots m is high enough and the grid of hk is subtle enough to get satisfying flexibility. Thus, a procedure is needed
which is able to estimate high-dimensional problems and avoids overfitting. In our simulation studies we found that
the use of more than one spread improves the performance distinctively. We found that it is useful to center the basis
functions by their means, i.e. we suggest to use B̃jk (xi) = Bjk (xi) − 1/n

∑n
i=1 Bjk (xi).
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