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Abstract

Two estimators of the expectation of a function, the classical based in Monte Carlo sampling method and one based in Random
Riemann Sums, are compared. It presents the differences on bias, variance, convergence and mainly convergence rates. Two ways of
sampling to obtain a Random Riemann Sum estimator are given. The first one provides a sequence of estimations whose terms are
independent, this fact produces a loss of order one in the convergence rate for the strong law compared with Monte Carlo sampling
method. The second one is considered in order to improve these results.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The classical estimator of the integral I =∫ g dF , where F is the distribution function of the random vector X, which
takes values on Rk, and g : Rk → R is a finite-valued measurable function, is the average În = (1/n)

∑n
k=1 g(Xk),

with {Xn, n�1} a sequence of independent copies of X. This estimator, În, is called Monte Carlo estimator.
For certain functions g this estimator does not seem to be “intelligent”; when g takes very large values at the points

of a region B such that P(X ∈ B) is very small, we can expect that only few sampled points are in B and the estimation
can be very smaller than the value of I. In these conditions, although the law of large numbers assures that În

a.s.−→ I , as
n → ∞, it seems reasonable to expect an estimation error too big, at least for small samples.

Pruss (1996) considered another estimator of I. The idea is to divide Rk into n parts, In1, In2, . . . , Inn, so that
P(X ∈ Ink) = 1/n, k = 1, . . . , n, and take a random point in each element of the partition. Let Xn1, Xn2, . . . , Xnn

be such random points, the Pruss estimator is Ĩn = (1/n)
∑n

k=1 g(Xnk). The advantage of this estimator over Monte
Carlo’s one is that the sampled points always lie well spread according to the distribution of X.

Every estimator value, (1/n)
∑n

k=1g(xnk), obtained by the Pruss method can be interpreted as an Riemann sum
where the range of the variable is divided into the n parts with the same probability respecting of F, not necessarily
with area equal to 1/n, and the point corresponding to each part, xnk , is chosen randomly. For this reason Ĩn is called
Random Riemann Sum (RRS) of the function g.
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The aim of our paper is to compare both estimators about several aspects: bias, variance and asymptotic behavior
(convergence and convergence rates). It shows two empirical examples where the RRS estimator is much better than
Monte carlo one in the short-term.

The paper is organized as follows: in the second section a brief summary of the results of the Monte Carlo estimator
is presented. The third section is devoted to study the RRS estimator. We present the framework to analyze the
characteristics of the RRS estimator, triangular rowwise independent arrays of which rows are a regular cover, and
results about bias, variance, convergence and convergence rates. Also, we present the comparison with the results of
Monte Carlo estimator, some differences are showed by several simulated examples. In the fourth section we present
another way, based in Kieffer and Stanojević (1982), to obtain a RRS estimator in order to improve the strong law results.
We prove results to compare it with the obtained in the previous sections. Finally, in the fifth section the conclusions
are presented.

2. Monte Carlo estimator

Given I = ∫
g dF , where F is the distribution function of the random vector X defined on the probability space

(�,A, P ) in Rk and g : Rk −→ R is a finite-valued measurable function, the average În = (1/n)
∑n

k=1g(Xk), with
{Xn, n�1} a sequence of independent copies of X, is a classical estimator of I called Monte Carlo estimator.

It is well-known that În is an unbiased estimator with variance

V (În) = 1

n
Eg2(X) − 1

n
E2g(X). (1)

The strongest convergence result is the Kolmogorov theorem (see, for instance, Shiryaev, 1996, Theorem IV.3.3) which
characterizes the almost sure convergence by a moment condition:

Theorem 1. E|g(X)| < ∞ is a necessary and sufficient condition to

În
a.s.−→ I .

We note that the way of obtaining the Monte Carlo estimator with n observations takes into account the n − 1 points

previously sampled, to obtain În−1, and the new sampled observation, g(Xn). Thus, the equation nÎn = (n − 1)În−1 +
g(Xn) describes the relation between the elements of the sequence {În}, this is a crucial fact to prove the strong law
results.

Baum and Katz (1965) characterized, by means of moment conditions, rates of convergence for Marcinkiewicz–
Zygmund weak and strong laws (Baum and Katz, 1965, Theorems 1–3). These results provide the following convergence
rates for the weak law:

Theorem 2. If p� − 1 then, E|g(X)|p+2 < ∞ is a necessary and sufficient condition to

∞∑
n=1

npP (|În − I | > �) < ∞ for all � > 0.

And the followings ones for the strong Law:

Theorem 3. If p > − 1 then, E|g(X)|p+2 < ∞ is a necessary and sufficient condition to

∞∑
n=1

npP

(
sup
k �n

|Îk − I | > �

)
< ∞ for all � > 0.

Theorem 4. The condition E|g(X)| log+|X| < ∞, where log+x=max{0, log x}, is a necessary and sufficient condition
to

∞∑
n=1

1

n
P

(
sup
k �n

|Îk − I | > �

)
< ∞ for all � > 0.
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