Computer Languages, Systems & Structures 35 (2009) 21-30

Contents lists available at ScienceDirect Egmmﬂ-gn
LANGURGES

Computer Languages, Systems & Structures

§
=
@
m
]
=
[
]
=5
C
<]
53]

journal homepage: www.elsevier.com/locate/cl

Transactional memory in a dynamic language™

Lukas Renggli*, Oscar Nierstrasz

Software Composition Group, University of Berne, 3012 Bern, Switzerland

ARTICLE INFO ABSTRACT

Article history: Concurrency control is mostly based on locks and is therefore notoriously difficult to use. Even
Received 16 November 2007 though some programming languages provide high-level constructs, these add complexity
Received in revised form and potentially hard-to-detect bugs to the application. Transactional memory is an attractive
30 May 2008 mechanism that does not have the drawbacks of locks, however, the underlying implementa-
Accepted 3 June 2008

tion is often difficult to integrate into an existing language. In this paper we show how we have
introduced transactional semantics into Smalltalk by using the reflective facilities of the lan-

Keywords: guage. Our approach is based on method annotations, incremental parse tree transformations
Transactional memory and an optimistic commit protocol. The implementation does not depend on modifications
Concurrent programming to the virtual machine and therefore can be changed at the language level. We report on a
Language constructs and features practical case study, benchmarks and further and on-going work.

© 2008 Elsevier Ltd. All rights reserved.

1. The need for transactions

Most dynamic programming languages have inherently weak support for concurrent programming and synchronization.
While such languages relieve the programmer of the burden to allocate and free memory by using advanced garbage collection
algorithms, they do not provide similar abstractions to ease concurrent programming [1].

We chose to build our prototype implementation in Smalltalk, because this dynamic language has excellent support for
reflection [2] that goes beyond the level of objects and classes and allows us to easily reify aspects of method compilation.
Smalltalk, and other dynamic languages such as Ruby, Python and Scheme, provide libraries to work with concurrent processes,
but only provide little help to control and synchronize the access of shared data. Smalltalk-80 [3] offers semaphores as the
only mean for synchronizing processes and guaranteeing mutual exclusion. The ANSI standard of Smalltalk [4] does not refer to
synchronization at all.

Only a few current Smalltalk implementations provide more sophisticated synchronization support. VisualWorks Smalltalk
provides a reentrant lock that allows the same process to reenter the lock multiple times. Other processes are blocked until
the owning process leaves the critical section. Unfortunately lock-based approaches have their drawbacks and are notoriously
difficult to use [5]:

Deadlocks: If there are cyclic dependencies between resources and processes, applications may deadlock. This problem can be
avoided by acquiring resources in a fixed order, however, in practice this is often difficult to achieve.

Starvation: A process that never leaves a critical section, due to a bug in the software or an unforeseen error, will continue to
hold the lock forever. Other processes that would like to enter the critical section starve.

* This work is based on an earlier work: Transactional Memory for Smalltalk, in Proceedings of the 2007 International Conference on Dynamic Languages
(ESUG/ICDL 2007), http://doi.acm.org/10.1145/1352678.1352692 © ACM, 2007.
* Corresponding author.
E-mail addresses: renggli@iam.unibe.ch (L. Renggli), oscar@iam.unibe.ch (O. Nierstrasz).
URL: http://www.lukas-renggli.ch (L. Renggli).

1477-8424/$ - see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.c1.2008.06.001


http://www.sciencedirect.com/science/journal/cl
http://www.elsevier.com/locate/cl
http://doi.acm.org/10.1145/1352678.1352692
file:renggli@iam.unibe.ch
file:oscar@iam.unibe.ch
http://www.lukas-renggli.ch

22 L. Renggli, O. Nierstrasz / Computer Languages, Systems & Structures 35 (2009) 21 - 30

Priority inversion: Usually schedulers guarantee that processes receive CPU time according to their priority. However, if a low
priority thread is within a critical section when a high priority process would like to enter, the high priority thread must wait.

Squeak Smalltalk [6] includes an implementation of monitors [7], a common approach to synchronize the use of shared data
among different processes. In contrast to mutual exclusion with reentrant locks, with monitors, a process can wait inside its
critical section for other resources while temporarily releasing the monitor. Although this avoids deadlock situations, the use of
monitors is difficult and often requires additional code to specify guard conditions [8]. Moreover, if the process is preempted
while holding the monitor, everybody else is blocked. Beginners are often overwhelmed by the complexity of using monitors as
Squeak does not offer method synchronization as found in Java.

Transactional memory [9,10] provides a convenient way to access shared memory by concurrent processes, without the
pitfalls of locks and the complexity of monitors. Transactional memory allows developers to declare that certain parts of the
code should run atomically: this means the code is either executed as a whole or has no effect. Moreover transactions run in
isolation, which means they do not affect and are not affected by changes going on in the system at the same time. Upon commit
the changes of a transaction are applied atomically and become visible to other processes. Optimistic transactions do not lock
anything, but rather conflicts are detected upon commit and either lead to an abort or retry of the transaction.

Most relational and object databases available in Smalltalk provide database transactions following the ACID properties:
Atomicity, consistency, isolation, and durability. However, they all provide this functionality for persistent objects only, not as a
general construct for concurrent programming. These implementations often rely on external implementations of transactional
semantics. GemStone Smalltalk [11] is a commercially available object database, that directly runs Smalltalk code. As such,
GemStone provides transactional semantics at the virtual machine (VM) level. Guerraoui et al. [12] developed GARF, a Smalltalk
framework for distributed shared object environments. Their focus is not on local concurrency control, but on distributed object
synchronization and message passing. They state that “A transactional mechanism should, however, be integrated within group
communication to support multi-server request atomicity.” [13]. Jean-Pierre Briot proposed Actalk [14], an environment where
Actors communicate concurrently with asynchronous message passing. The use of an Actor model is intrusive. It implies a shift
of the programming paradigm to one where there is no global state and therefore no safety issues.

In this paper we present an implementation of transactions in Squeak based on parse-tree transformation. In this way most
code is free of concurrency annotations, and transactional code is automatically generated only in the contexts where it is actually
needed.

The specific contributions of this paper are:

o The implementation of transactional semantics in a dynamic language, using the reflective capabilities of the language without
any changes to the low-level VM implementation.

o Amechanism to specify context-dependent code using method annotations, for example to intercept the evaluation of primitive
methods.

o Incremental, on-the-fly parse tree transformation for different execution contexts.

 Efficient, context-dependent code execution using the execution mechanisms of a standard VM.

This article extends our previous work [15] as follows: (1) we describe how our approach applies to dynamically typed languages
in general, not just the implementation language of our prototype, (2) we devote a section to related work, (3) we explain how
nested transactions are handled, and (4) we enhance the validation section with results of additional benchmarks.

Section 2 presents some basic usage patterns of our implementation. Section 3 shows the implementation of transactions in
Squeak without modifying the underlying VM. Section 4 validates our approach by running a collection of benchmarks and by
applying the concept to a real world application. Section 5 compares our approach with other approaches that have been taken
to integrate transactional memory in programming languages. Section 6 concludes this article with some remarks about ongoing
and future work.

2. Programming with transactions

Transactions offer an intuitively simple mechanism for synchronization concurrent actions. They do not require users to
declare specific locks or guard conditions that have to be fulfilled. Moreover transactions can be used without prior knowledge
of the specific objects that might be modified. Transactions are global, yet multiple transactions can run in parallel. The commit
protocol checks for conflicts and makes the changes visible to other processes atomically.

On the left side of Fig. 1 we see the traditional way of using a semaphore to ensure mutual exclusion on a tree data structure.
The key problem is that all read and write accesses to the tree must be guarded using the same lock to guarantee safety. A
thread-safe tree must be fully protected in all of its public methods. Furthermore, we cannot easily have a second, unprotected
interface to the same tree for use in a single-threaded context.

On the right side of Fig. 1 we present the code that is needed to safely access the collection using a transaction: the
write access is put into a block that tells the Smalltalk environment to execute its body within a transaction. The read ac-
cess can happen without further concurrency control. As long as all write accesses occur within the context of a transaction,
read accesses are guaranteed to be safe. The optimistic commit protocol of the transaction guarantees safety by (i) ensuring



Download English Version:

https://daneshyari.com/en/article/418236

Download Persian Version:

https://daneshyari.com/article/418236

Daneshyari.com


https://daneshyari.com/en/article/418236
https://daneshyari.com/article/418236
https://daneshyari.com

