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Abstract

In population genetic study, one of the first analyses is to explore the relationships among the frequencies of alleles within or
between loci. Hardy–Weinberg equilibrium is tested for two alleles of a single locus, and the linkage disequilibrium is tested for
an allele from each of two loci. Although the equilibrium plays an important role and often serves as a basis for genetic inference,
research on the graphical representation of this information is rare. In this study, we consider correspondence analysis and biplot
approaches as tools for finding associations between alleles. We also propose the supplementary data method to compare allele
frequencies of several populations from different studies. These approaches provide the graphical representation which makes it
easy to interpret the patterns of disequilibrium and to compare the allele frequencies between populations. These proposed methods
are illustrated with numerical examples.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Once the allele frequencies and the genotype frequencies have been estimated, one of the first analyses of population
genetic data is to look for associations among the frequencies of alleles within or between loci. When there are no
disturbing forces such as selection, mutation or migration that would change the allele frequencies over time, and when
there is a random mating in very large populations, these pairs of alleles are known not to be associated. A consequence
of this independence is that the genotype frequencies are equal to the product of allele frequencies (Weir, 1996). The
differences between joint frequencies and the products of individual frequencies are called disequilibrium coefficients.
For two alleles at a single locus, we test whether the Hardy–Weinberg disequilibrium is zero, and for an allele from
each of two loci, we test whether the linkage disequilibrium is zero. Furthermore, it often happens we want to compare
the allele frequencies of several populations.

Despite its importance in the field of population genetics and its role as a basis for the genetic inference, only the
p-values of the tests are reported in most researches (cf. Iwasa et al., 1997; Budowle et al., 1997; Gehrig et al., 1999;
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Fregeau et al., 1998). A graphical representation of the association between alleles is helpful, especially when there are
multiple alleles, to understand the properties of the given data, but there are only a few researches for graphical approach
to analyze the allele frequency data (Sjerps et al., 1995; Abecasis and Cookson, 2000). In this study, we consider the
correspondence analysis (CA) and biplot approaches as the graphical methods for showing the allele relationships
within and between loci. These plots can check whether the Hardy–Weinberg equilibrium or the linkage equilibrium is
satisfied or not. We also suggest a supplementary data method to compare several populations from different study. In
Section 2, we describe the graphical methods to represent the association between alleles in a single locus. We extend
these methods to the two loci cases in Section 3. In Section 4, we propose a supplementary data method for comparing
several populations from different studies. In each section, we provide the examples using real and/or simulated STR
data.

2. Graphical approach for finding allele association within a locus

Consider a locus which has k alleles A1, A2, . . . , Ak . In Hardy–Weinberg equilibrium, the frequency of a homozygote
AiAi becomes p2

i and that of a heterozygote AiAj becomes 2pipj , where pi is the population frequencies of allele
Ai . For allele Ai and Aj , the disequilibrium coefficients is defined as Dij = pij − pipj , where pij is the population
frequencies of allele Aij . If a sample with size n is from a population of interest and x∗

ij (1�j � i�k) is the observed
count of genotype AiAj , then under Hardy–Weinberg equilibrium,
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follows �2 distribution with k(k − 1)/2 degrees of freedom, where p̂i = xii/n + 1
2

∑
j �=ixij (Weir, 1996).

Let X = (xij ) be k × k symmetric matrix whose diagonal elements are xii = x∗
ii and the non-diagonal elements are

xij = xji = x∗
ij /2. Define G and its singular value decomposition as

G = D
−1/2
r (F − rc′)D−1/2

c = UD�V
′, (2)

where F =(fij ), fij =xij /n, r=(f1+, . . . , fr+)′, c=(f+1, . . . , f+c)
′, fi+=∑

j fij , f+j =∑
ifij , Dr =diag(f1+, . . . ,

fr+) and Dc =diag(f+1, . . . , f+c). U and V are both k×k matrices with orthonormal columns so that U ′U =V ′V =Ik ,
D� = diag(�1, . . . , �k), where �i is ith singular value.

For CA, we plot the first two columns of A = D
−1/2
r UD� and B = D

−1/2
c VD� (Greenacre and Hastie, 1987). The

distances between two row (column) points are the approximated chi-square distance between profiles. Thus, we can
interpret that the two closely located allele points tend to have similar frequencies. Eq. (1) can be re-expressed as
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where xi+ =∑
j xij , x+j =∑

ixij and ri is row profile such that ri = (xi1/xi+, . . . , xik/xi+)′. It means that �2/n is the
weighted average of the squared chi-squared distances of the row profiles ri to their centroid c. Thus, the significant
�2 statistic can be geometrically interpreted as a significant deviation of the point from the origin. That is, if an allele
is far from the origin, it implies that the allele contributes to break the Hardy–Weinberg equilibrium. Since the data
matrix is symmetric, we do not need to obtain both A and B. Especially, A = B if G is a positive semi-definite matrix.

For correspondence analysis biplot (CA biplot), let A∗ = UD�
� and B∗ = VD1−�

� , where D�
� = diag(��

1, �
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2, . . . , �
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and 0���1. It follows that G = A∗B∗′ which means gij = a∗′
i b∗

j , where gij is the (i, j)th element of G, a∗′
i is the ith

row of A and b∗
j is the first two columns of the jth row of B. It can be shown that (Gabriel, 1978)
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provides the best approximation of rank s(�k) to G. That is, gij = ∑k
l=1�luilvjl = a∗′

i b∗
j can be approximated by

gij(s) = ∑s
l=1�luilvjl = a∗′

i(s)b
∗
j (s), 1�s�k, where uil , vjl are the (i, l)th and (j, l)th elements of U , V , respectively,
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