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Abstract

Implementing the Monte Carlo EM algorithm (MCEM) algorithm for finding maximum likelihood estimates (MLEs) in the
nonlinear mixed effects model (NLMM) has encountered a great deal of difficulty in obtaining samples used for estimating the
E step due to the intractability of the target distribution. Sampling methods such as Markov chain techniques and importance
sampling have been used to alleviate such difficulty. The advantage of Markov chains is that they are applicable to a wider range
of distributions than the approaches based on independent samples. However, in many cases the computational cost of Markov
chains is significantly greater than that of independent samplers. The MCEM algorithms based on independent samples allow for
straightforward assessment of Monte Carlo error and can be considerably more efficient than those based on Markov chains when an
efficient candidate distribution is chosen, which forms the motivation of this paper. The proposed MCEM algorithm in this paper uses
samples obtained from an easy-to-simulate and efficient importance distribution so that the computational intensity and complexity
is much reduced. Moreover, the proposed MCEM algorithm preserves the flexibility introduced by independent samples in gauging
Monte Carlo error and thus allows the Monte Carlo sample size to increase with the number of EM iterations. We also introduce an
EM algorithm using Gaussian quadrature approximations (GQEM) for the E step. In low-dimensional cases, the GQEM algorithm
is more efficient than the proposed MCEM algorithm and thus can be used as an alternative. The performances of the proposed EM
methods are compared to the existing ML estimators using real data examples and simulations.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Nonlinear mixed effects models (NLMMs) have become more frequently used for analyzing the data consisting
of repeated measurements in pharmacokinetics, growth, and other studies. Repeated measurement data consist of
measurements taken on each of a number of individuals repeatedly over time or under different experimental conditions.
The NLMM model describes this type of data via a nonlinear function characterizing the systematic dependence of the
observations on the covariates and parameters.

Maximum likelihood estimation in the nonlinear mixed effects model brings up a substantial challenge because
the likelihood of observations cannot typically be expressed in closed form. Several different approximations to the
log-likelihood have been proposed, and they include the linearization approximation (Sheiner and Beal, 1980), the
LME approximation (Lindstrom and Bates, 1990), and the Laplace’s approximation (Wolfinger, 1993; Vonesh, 1996).
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Available software packages for these methods include the NONMEM (Beal et al., 1992), the S-PLUS function NLME
(Pinheiro and Bates, 1995), and the SAS procedure PROC NLMIXED.

These likelihood approximations often perform well if the number of the intraindividual measurements is not small
and the variability of random effects is not large, but when some of the individuals have sparse data or the variability of the
random effects is large there are considerable errors in approximating the likelihood function via these approximations
(Davidian and Giltinan, 1995; Pinheiro and Bates, 1995; Lindstrom and Bates, 1990). This has motivated the use of
exact methods such as Monte Carlo methods. In particular, the Monte Carlo EM algorithm (Wei and Tanner, 1990),
in which the E step is approximated using simulated samples from the exact conditional distribution of the random
effects given the observed data, has been used for estimation in mixed models. Walker (1996) proposes an MCEM
algorithm using approximations based on samples from the distribution of the random effects for ML exact estimation
in a specific class of NLMMs. McCulloch (1997) and Booth and Hobert (1999) propose different versions of the MCEM
algorithm for estimation in generalized linear mixed effects models, where sampling methods including Markov chain
techniques, rejection sampling, and importance sampling are used to simulate samples. A stochastic version of the EM
algorithm (SAEM) using stochastic approximations involving samples obtained via Markov chains for fitting NLMMs
is proposed by Kuhn and Lavielle (2005). The advantage of Markov chains is that they are applicable to a wider variety
of distributions than independent samplers. However, in the NLMM setting the computational cost of Markov chains can
be substantially higher than that of independent samplers due to the intractability of the target distribution. Moreover,
the Monte Carlo error assessment, which is straightforward for the MCEM algorithm based on independent samples,
may be an intensive and complex undertaking for the MCEM algorithm based on Markov chains. An independent
sampler such as importance sampling can be considerably more efficient than Markov chains when a proper candidate
distribution is chosen. These advantages of independent samplers over Markov chains form the motivation of his paper.

In this paper, we implement the MCEM algorithm using samples obtained via importance sampling from a mixture
distribution chosen to be simple in the form, easy to sample from, and efficient (Lai and Shih, 2006). Moreover, because
the proposed MCEM algorithm preserves the flexibility introduced by independent samples in assessing Monte Carlo
error, the Monte Carlo sample size is increased with the number of EM iterations. Thus, the proposed MCEM algorithm
is computationally inexpensive and efficient relative to the EM algorithms based on Markov chains.

Because Monte Carlo method is generally less efficient than quadrature in low dimensions for its inability to take
account of the smoothness information built into quadrature, we introduce a Gaussian quadrature based EM method
(GQEM) as an alternative to the MCEM algorithm in low-dimensional cases.

The paper is organized as follows. The model and likelihood of the NLMM are presented in Section 2. The MCEM
algorithm and the GQEM algorithm are introduced in Section 3. The estimates of the log-likelihood and standard
errors for the proposed EM algorithms are computed in Section 4. Section 5 compares the proposed EM algorithms
with likelihood approximations and the SAEM algorithm using real data examples and simulations. Conclusions from
numerical studies are given in Section 6. The paper concludes with a discussion.

2. Nonlinear mixed effects models

We consider a general class of nonlinear mixed effects models:

yij = f (�, bi , xij ) + g(�, bi , xij , �)�ij ,

where yij is the jth (j = 1, . . . , ni) response for the ith individual (i = 1, . . . , n), xij is a vector of covariates, �(p × 1)

are fixed effects, bi (k × 1) are random effects and assumed i.i.d. N(0, D), and f is a nonlinear function of (�, bi ). The
intraindividual errors �ij are assumed i.i.d. N(0, �2) and independent of the bi . The variance function g is dependent
on f and a parameter vector �; a common choice of g is the power function, f �, reflecting the possible character of
intraindividual variability.

Let � = (�, �2, D, �) denote the complete vector of unknown parameters. The marginal density of yi = (yij )
T, from

which maximum likelihood estimation of � is obtained, can be computed by integrating over the distribution of bi :

p(yi ) =
∫

p(yi , bi |�) dbi =
∫

p(yi |bi , �, �2, �)p(bi |D) dbi .
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