Distance magic graphs $G \times C_{n}$

Sylwia Cichacz*
Faculty of Applied Mathematics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland

ARTICLE INFO

Article history:

Received 4 March 2013
Received in revised form 4 April 2014
Accepted 23 May 2014
Available online 2 July 2014

Keywords:

Distance magic labeling
Magic constant
Sigma labeling
Graph labeling
Abelian group
Direct product
Kronecker product

Abstract

A Γ-distance magic labeling of a graph $G=(V, E)$ with $|V|=n$ is a bijection f from V to an Abelian group Γ of order n such that the weight $w(x)=\sum_{y \in N_{G}(x)} f(y)$ of every vertex $x \in V$ is equal to the same element $\mu \in \Gamma$, called the magic constant.

In this paper we will show that if G is a graph of order $n=2^{p}(2 k+1)$ for some natural numbers p, k such that $\operatorname{deg}(v) \equiv c\left(\bmod 2^{p+2}\right)$ for some constant c for any $v \in V(G)$, then there exists a Γ-distance magic labeling for any Abelian group Γ of order $4 n$ for the direct product $G \times C_{4}$. Moreover if c is even, then there exists a Γ-distance magic labeling for any Abelian group Γ of order $8 n$ for the direct product $G \times C_{8}$.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and preliminaries

All graphs considered in this paper are simple finite graphs. We use $V(G)$ for the vertex set and $E(G)$ for the edge set of a graph G. The neighborhood $N(x)$ or more precisely $N_{G}(x)$, when needed, of a vertex x is the set of vertices adjacent to x, and the degree $d(x)$ of x is $|N(x)|$, the size of the neighborhood of x. By C_{n} we denote a cycle on n vertices.

A distance magic labeling (also called sigma labeling) of a graph $G=(V, E)$ of order n is a bijection $l: V \rightarrow\{1,2, \ldots, n\}$ with the property that there is a positive integer μ (called the magic constant) such that $\sum_{y \in N_{G}(x)} l(y)=\mu$ for every $x \in V$. If a graph G admits a distance magic labeling, then we say that G is a distance magic graph [4]. The sum $\sum_{y \in N_{G}(x)} l(y)$ is called the weight of the vertex x and is denoted by $w(x)$.

The concept of distance magic labeling has been motivated by the construction of magic squares. It is worth mentioning that finding an r-regular distance magic graph turns out equivalent to finding equalized incomplete tournament $\operatorname{EIT}(n, r)$ [10]. In an equalized incomplete tournament $\operatorname{EIT}(n, r)$ of n teams with r rounds, every team plays exactly r other teams and the total strength of the opponents that team i plays is k. Thus, it is easy to notice that finding an $\operatorname{EIT}(n, r)$ is the same as finding a distance magic labeling of any r-regular graph on n vertices. For a survey, we refer the reader to [4,11].

The following observations were independently proved:
Observation 1.1 ([17,19,20,22]). Let G be an r-regular distance magic graph on n vertices. Then $\mu=\frac{r(n+1)}{2}$.
Observation 1.2 ([17,19,20,22]). No r-regular graph with r odd can be a distance magic graph.
We recall three out of four standard graph products (see [12,15]). All three, the Cartesian product $G \square H$, lexicographic product $G \circ H$ and the direct product $G \times H$, are graphs with the vertex set $V(G) \times V(H)$. Two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent in:

[^0]- $G \square H$ if and only if $g=g^{\prime}$ and h is adjacent to h^{\prime} in H, or $h=h^{\prime}$ and g is adjacent to g^{\prime} in G;
- $G \circ H$ if and only if either g is adjacent to g^{\prime} in G or $g=g^{\prime}$ and h is adjacent to h^{\prime} in H;
- $G \times H$ if g is adjacent to g^{\prime} in G and h is adjacent to h^{\prime} in H.

The graph $G \circ H$ is also called the composition and is denoted by $G[H]$ (see [13]). The product $G \times H$, which is also known as Kronecker product, tensor product, categorical product and graph conjunction, is the most natural graph product. The direct product is commutative, associative, and it has several applications, for instance it may be used as a model for concurrency in multiprocessor systems [18]. Some other applications can be found in [16].

Some graphs which are distance magic among (some) products can be seen in [1-3,5,6,8,9,19,21].
Theorem 1.3 ([19]). Let $r \geq 1, n \geq 3$, G be an r-regular graph and C_{n} be the cycle of length n. The graph $G \circ C_{n}$ admits a distance magic labeling if and only if $n=4$.

Theorem 1.4 ([19]). Let G be an arbitrary regular graph. Then $G \circ \bar{K}_{n}$ is distance magic for any even n.
Theorem 1.5 ([2]). Let G be an arbitrary regular graph. Then $G \times C_{4}$ is distance magic.
Since the Cartesian product $C_{n} \square C_{m}$ is distance magic if and only if $n=m \equiv 2(\bmod 4)$ (see [21]), the graph $C_{n} \square C_{4}$ is not distance magic for any n, we state the problem:

Problem 1.6. If G is a regular graph, determine if there is a distance magic labeling of $G \square C_{4}$.
The following problem was posed in [4].
Problem 1.7 ([4]). If G is a non-regular graph, determine if there is a distance magic labeling of $G \circ C_{4}$.
A similar problem for the direct product was stated in [8]:
Problem 1.8 ([8]). If G is a non-regular graph, determine if there is a distance magic labeling of $G \times C_{4}$.
Moreover it was proved that:
Theorem 1.9 ([8]). Let m and n be two positive integers such that $m \leq n$. The graph $K_{m, n} \times C_{4}$ is a distance magic graph if and only if the following conditions hold:

1. $m+n \equiv 0(\bmod 2)$ and
2. $1=2(8 n+1)^{2}-(8 m+8 n+1)^{2}$ or $m \geq(\sqrt{2}-1) n+\frac{\sqrt{2}-1}{8}$.

Froncek in [9] defined the notion of group distance magic graphs, i.e. the graphs allowing a bijective labeling of vertices with elements of an Abelian group resulting in constant sums of neighbor labels.

Definition 1.10. A Γ-distance magic labeling of a graph $G=(V, E)$ with $|V|=n$ is a bijection f from V to an Abelian group Γ of order n such that the weight $w(x)=\sum_{y \in N_{G}(x)} f(y)$ of every vertex $x \in V$ is equal to the same element $\mu \in \Gamma$, called the magic constant. A graph G is called a group distance magic graph if there exists a Γ-distance magic labeling for every Abelian group Γ of order $|V(G)|$.

The connection between distance magic graphs and Γ-distance magic graphs is as follows. Let G be a distance magic graph of order n with the magic constant μ^{\prime}. If we replace the label n in a distance magic labeling for the graph G by the label 0 , then we obtain a \mathbb{Z}_{n}-distance magic labeling for the graph G with the magic constant $\mu \equiv \mu^{\prime}(\bmod n)$. Hence every distance magic graph with n vertices admits a \mathbb{Z}_{n}-distance magic labeling. Although a \mathbb{Z}_{n}-distance magic graph on n vertices is not necessarily a distance magic graph (see [9]), it was proved that Observation 1.2 also holds for a \mathbb{Z}_{n}-distance magic labeling [7].

Observation 1.11 ([7]). Let r be a positive odd integer. No r-regular graph on n vertices can be a \mathbb{Z}_{n}-distance magic graph.
The following theorem was proved in [9]:
Theorem 1.12 ([9]). The Cartesian product $C_{m} \square C_{k}, m, k \geq 3$, is a $\mathbb{Z}_{m k}$-distance magic graph if and only if $k m$ is even.
Froncek also showed that the graph $C_{2 k} \square C_{2 k}$ has a $\mathbb{Z}_{2}^{2 k}$-distance magic labeling for $k \geq 2$ and $\mu=(0,0, \ldots, 0)$ [9]. Cichacz proved:

Theorem 1.13 ([6]). Let G be a graph of order n and Γ be an Abelian group of order $4 n$. If $n=2^{p}(2 k+1)$ for some natural numbers p, k and $\operatorname{deg}(v) \equiv c\left(\bmod 2^{p+1}\right)$ for some constant c for any $v \in V(G)$, then there exists a Γ-distance magic labeling for the graph $G \circ C_{4}$.

It seems that the direct product is the natural choice among (standard) products to deal with Γ-distance magic graphs and group distance magic graphs in general. The reason for this is that the direct product is a suitable product if we observe graphs as categories. Hence it should perform well with the product of (Abelian) groups, as illustrated in the following theorem.

https://daneshyari.com/en/article/418289

Download Persian Version:
https://daneshyari.com/article/418289

Daneshyari.com

[^0]: * Tel.: +48 1261731 77; fax: +48 126173165 .

 E-mail address: cichacz@agh.edu.pl.

