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a b s t r a c t

Factors, obtained by correspondence analysis, are used to find biclustering of a contingency
table such that the row–column cluster pairs are regular, i.e., they have small discrepancy.
In our main theorem, the constant of the so-called volume-regularity is related to the SVD
of the normalized contingency table. This result is applicable to two-way cuts when both
the rows and columns are divided into the same number of clusters, thus extending partly
the result of Butler for estimating the discrepancy of a contingency table by the largest
non-trivial singular value of the normalized table (one-cluster, rectangular case), and
partly the result of Bolla for estimating the constant of volume-regularity by the structural
eigenvalues and the distances of the corresponding eigen-subspaces of the normalized
modularity matrix of an edge-weighted graph (several clusters, symmetric case).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A typical problem of contemporary cluster analysis is to find relatively small number of groups of objects, belonging to
rows and columns of a contingency table which exhibit homogeneous behavior with respect to each other and do not differ
significantly in size. To make inferences on the separation that can be achieved for a given number of clusters, minimum
normalized two-way cuts and discrepancies of the cluster pairs are investigated and related to the SVD of the normalized
contingency table.

Contingency tables are rectangular arrays with nonnegative, real entries, e.g., the keyword-document matrix or
microarray gene expression data. In the former one, the matrix entries are associations between documents and words,
whereas in the latter one, they are expression levels of genes under different conditions. We also look for a bipartition of the
genes and conditions such that genes in the same cluster equally influence conditions of the same cluster. To find so-called
biclustering, i.e., simultaneous clustering of the rows and columns, a great variety of algorithms are used.

The first algorithm of this flavor is due to Hartigan [17], who used two-way analysis of variance techniques to find
constant valued submatrices within the rectangular array. In [24], applications tomicroarrays is presented, where biclusters
identify subsets of genes sharing similar expression patterns across subsets of conditions, but the authors do not use spectral
methods. We will rather concentrate on methods that use the SVD of the original or normalized contingency table.

The Latent Semantic Indexing offers an SVD-based algorithm, which can be generalized in many different ways. For
example, in [15], the authors find scoring systems simultaneously for the keywords and documents with respect to the
most important topics or factors, and use the singular vector pairs corresponding to the k outstanding singular values of the
table.

If a scoring system is endowed with the marginal measures, the problem can be formulated in terms of the
correspondence analysis, based on the SVD of the normalized table, see [4,13,16]. We will show, how in possession of the
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correspondence factor pairs a biclustering can be performed that finds simultaneous clustering of the rows and columns of
the table such that certain regularity requirements are met.

A survey of biclustering algorithms in data mining, especially in biological data analysis is given in [8,24]. To find
biclustering of a binary table via the k-means algorithm is also discussed in [10], where the author embeds the contingency
table into a bipartite graph and uses normalized cut objectives and SVD to obtain the convenient biclustering. To find the
SVD for large rectangular matrices, randomized algorithms are favored. A randomized, so-called fast Monte Carlo algorithm
for the SVD and its application for clustering large graphs via the k-means algorithm is presented in [12].

The problem is also related to the Page-rank (see [19]). As for the microarray analysis, the authors of [20] use the leading
singular values and vector pairs of the normalized contingency table to find a so-called checkerboard pattern in it, but they
do not give estimation how this pattern approaches the original table. Some authors, e.g., [21], impose sparsity inducing
conditions on the leading singular vector pairs, so that they have piecewise constant structure with many zero coordinates,
and so, produce a checkerboard structure.

Though,many papers dealwith the SVD-based biclustering of the underlying contingency table (see also [18,22,26]), they
just introduce numerical algorithms, possibly with some constraints, which utilize the well-known favorable properties
of low-rank approximations. After finding the checkerboard patterns, no inference is made on the homogeneity of the so
obtained biclusters by means of the SVD of the table. It is also a drawback that the low-rank approximation, unlike the
original table, may have negative entries.

In Section 2, we relate the biclustering problem to normalized two-way cuts of contingency tables, akin to the way
normalized cuts of edge-weighted graphs are estimated by the normalized Laplacian spectra, see [10]. The minimization of
this objective function favors biclusterings with dense diagonal, and sparse off-diagonal blocks. In terms of microarrays, it
finds partition of genes and conditions into the same number of clusters such that to each cluster of conditions we can find
a collection of genes responsible for this condition, and vice versa.

In Section 3, more generally, we are looking for so-called volume-regular row–column clusters pairs, such that the
association between their row and column subsets is homogeneous, but not necessarily dense or sparse. The minimum
of the pairwise discrepancies is related to the so-called structural singular values and corresponding eigen-functions of the
normalized table. We use the one-cluster estimation of Butler [9], who estimates the discrepancy of the whole contingency
table by the largest non-trivial singular value of the normalized table (one-cluster, rectangular case); moreover, he proves a
two-sided relation between this singular value and the discrepancy. Herewe extend the forward direction of this estimation
for the k-cluster case,where our results also indicate the optimal choice of k. For this purpose,we use the result of Bolla [3] for
estimating the constant of volume-regularity by the structural eigenvalues and the distances of the corresponding eigen-
subspaces of the normalized modularity matrix of an edge-weighted graph. Since there are several eigenvalues (singular
values) responsible for this versatile property, together with the corresponding eigenvectors (singular vector pairs), this
statement is more complicated to prove and cannot be simply inverted, akin to the one-cluster case. Nonetheless, this
problem has not yet been treated in the literature.

Section 4 is devoted to discussion and possible extension to directed graphs.

2. Normalized two-way cuts of contingency tables

Let C be a contingency table on row set Row = {1, . . . , n} and column set Col = {1, . . . ,m}, where C is n × m matrix of
entries cij ≥ 0. Without loss of generality, we suppose that there are no identically zero rows or columns. Here cij is some
kind of association between the objects behind row i and column j, where 0 means no interaction at all.

Let the row- and column-sums of C be

drow,i =

m
j=1

cij (i = 1, . . . , n) and dcol,j =

n
i=1

cij (j = 1, . . . ,m)

which are collected in the main diagonals of the n × n andm × m diagonal matrices Drow and Dcol, respectively. The matrix

Ccorr = D−1/2
row CD−1/2

col (1)

is called the correspondence matrix (normalized contingency table) belonging to the table C, see [4]. If we multiply all the
entries of Cwith the same positive constant, the correspondence matrix Ccorr will not change. Therefore, without the loss of
generality,

n
i=1
m

j=1 cij = 1 will be assumed in the sequel.
Given an integer k(0 < k ≤ rank (C)), we want to simultaneously partition the rows and columns of C into disjoint,

nonempty subsets

Row = R1 ∪ · · · ∪ Rk, Col = C1 ∪ · · · ∪ Ck

such that we impose conditions on the cuts c(Ra, Cb) =


i∈Ra


j∈Cb

cij(a, b = 1, . . . , k) between the row–column cluster
pairs. For this purpose, the following so-called normalized two-way cut of the contingency table with respect to the above
k-partitions Prow = (R1, . . . , Rk) and Pcol = (C1, . . . , Ck) of its rows and columns and the collection of signs σ is defined as
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