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a b s t r a c t

We investigate when a complete graph Kn with some edges deleted is determined by its
adjacency spectrum. It is shown to be the case if the deleted edges form a matching, a
complete graph Km provided m ≤ n − 2, or a complete bipartite graph. If the edges of a
path are deletedwe prove that the graph is determined by its generalized spectrum (that is,
the spectrum together with the spectrum of the complement).When atmost five edges are
deleted from Kn, there is just one pair of nonisomorphic cospectral graphs. We construct
nonisomorphic cospectral graphs (with cospectral complements) for all n if six or more
edges are deleted from Kn, provided that n is big enough.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Two graphs for which the adjacency matrices have the same spectrum are called cospectral. A graph G is determined by
its spectrum (DS for short) if every graph cospectral with G is isomorphic with G. Spectral characterizations of graphs (with
respect to various matrices) did get much attention in the recent past; see [4,5]. It has been conjectured by the second
author that almost all graphs are DS. Truth of this conjecture would mean that the spectrum gives a useful fingerprint for
a graph. The paradox is that it is difficult to prove that a given graph is DS. Not very many classes of graphs are known to
be DS. These include for example the path Pn, the cycle Cn and the complete graph Kn. A number of papers have appeared
that prove spectral characterizations for more complicated cases. Very often such graphs have relatively few edges, like
T-shape trees and lollipop graphs (see [11,1]). Not many results are known if G has many edges, that is, the complement
of G has few edges. If G is regular, or if one considers the spectrum of the Laplacian matrix, then a graph is DS if and
only if the complement is. However, with respect to the adjacency spectrum of a nonregular graph G with few edges, the
characterization problem for the complement of G is most of the time much harder than for G. For example for the path Pn,
there is a straightforward proof that Pn is DS (see for example [4]). However, for the complement of Pn the proof is rather
involved (see [7]).

IfH is a subgraph of a graph G, then the graph obtained from G by deleting the edges ofH is denoted by G\H . In this paper
the following graphs are proved to be DS: Kn\ℓK2, Kn\Km (providedm ≤ n− 2), Kn\Kℓ,m and Kn\G, when G has at most four
edges. We show that there is exactly one pair of nonisomorphic cospectral graphs if five edges are deleted from Kn. If six or
more edges are deleted from Kn, one can obtain cospectral graphs for every nwhich is big enough.

The graphΓ = Pℓ+(n−ℓ)K1 (that is,Γ is the disjoint union of the path Pℓ and n−ℓ isolated vertices) has a nonisomorphic
cospectral mate if ℓ is odd and 5 ≤ ℓ ≤ n − 1 (see [3]). The complements of these cospectral graphs are not cospectral.
More generally, we prove that Γ is determined by the generalized spectrum (which is the spectrum of Γ together with the
spectrum of the complement).
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2. Removing a matching or a complete graph

It is known that the adjacency spectrum determines the number of closed walks of any given length ℓ. For ℓ = 0, 2 and
3 this implies that cospectral graphs have the same number of vertices, edges and triangles, respectively. Deleting one edge
from Kn destroys n − 2 triangles, and deleting m edges destroys at most m(n − 2) triangles, with equality if and only if the
deleted edges form amatching. Therefore any graph with n vertices,

 n
2


−m edges and

m
3


−m(n−2) triangles is Kn\mK2.

Thus we can conclude the following proposition.

Proposition 2.1. A graph obtained from Kn by removing the edges of a matching is DS.

Suppose G = Kn\Km. Then G has adjacency matrix

A =


Om J
J J − In−m


(as usual, O, J and I are the all-zero, all-one and identity matrix, respectively; indices indicate the order). We see that
rank A = n − m + 1 and rank(A + I) = m + 1; hence, A has an eigenvalue 0 with multiplicitym − 1 and an eigenvalue −1
with multiplicity n − m − 1 (the remaining two eigenvalues of A are 1

2 (n − m − 1 ±
√
n2 − 3m2 + 2mn − 2n + 2m + 1)).

It will be proved that G is DS provided that m ≤ n − 2. The first step is a result of Smith [10].

Lemma 2.1. If a graph G has only one positive eigenvalue, then G is a complete multipartite graph, possibly extended with some
isolated vertices.

Proof. Suppose that G has F = K2 + K1 as an induced subgraph. Let x be the isolated vertex in F . Assume that x is not
isolated in G, then x is adjacent to some vertex y of G outside F . The vertices of F together with y induce a subgraph of G on
four vertices containing two disjoint edges. There are just three such graphs: 2K2, P4, and a triangle with one pendant edge.
All three have a positive second largest eigenvalue which contradicts the interlacing inequalities (see [2, p. 19]). Therefore
F is not an induced subgraph of G, and therefore any two nonadjacent vertices of G have the same neighbors, which proves
the claim. �

Theorem 2.1. If m ≤ n − 2, then Kn\Km is DS.

Proof. Let G be a graph cospectral with Kn\Km. By the above lemma, G consist of a complete multipartite graph G′ and
possibly some isolated vertices. The two smallest eigenvalues of the complete tripartite graph K2,2,1 are −2 and 1 −

√
5.

Both of these values are less than −1, and eigenvalue interlacing implies that K2,2,1 is not an induced subgraph of G′. A
complete multipartite graph not containing K2,2,1 as an induced subgraph has at most two classes, or has at most one class
with more than one vertex. Therefore G′ is a complete bipartite graph or G′

= Kn′\Km′ where m′
≤ n′

− 2. In the first case
G′

= K2, or G′ has no eigenvalue −1, so n − m − 1 = 0 which was excluded. In the second case, the eigenvalue −1 has
multiplicity n−m−1 in G andmultiplicity n′

−m′
−1 in G′, so n−m = n′

−m′. Moreover, G and G′ have the same number
of edges; hence, (n − m)(n − 1)/2 + m(n − m) = (n′

− m′)(n′
− 1)/2 + m′(n′

− m′). Therefore G = G′
= Kn\Km. �

Note that if m = n − 1 the result need not be true. Then Kn\Km = K1,n−1, and if ℓ divides n − 1, then K1,n−1 is cospectral
with Kℓ,k + (n − ℓ − k)K1, where k = (n − 1)/ℓ.

3. The multiplicity of −1

The complete graph Kn has an eigenvalue −1 with multiplicity n − 1. If a few edges are deleted from Kn, then there
will still be an eigenvalue −1 with large multiplicity. In this section we deal with graphs having the eigenvalue −1 with
multiplicity at least n − 3. Clearly Kn is the only graph for which the multiplicity of −1 is n − 1.

Proposition 3.1. Let G be a graph on n vertices having an eigenvalue −1 with multiplicity n − 2. Then G is the disjoint union of
two complete graphs, and therefore G is DS.

Proof. Suppose that G has eigenvalue −1 with multiplicity n− 2. Then A+ I has rank 2. Since G ≠ Kn, we may assume that
the first two rows of A+I correspond to nonadjacent vertices. Clearly these rows are independent and, since rank(A+I) = 2,
all rows of A + I are linear combination of the first two rows. Then it follows straightforwardly that G is the disjoint union
of two complete graphs. Clearly, the spectrum determines the order of each of the complete graphs. �

The following theorem is an unpublished result by Van Dam, Haemers and Stevanović.

Theorem 3.1. Let G be a graph with n vertices having an eigenvalue −1 with multiplicity n − 3. Then G = Kn\Kℓ,m, where
ℓ,m ≥ 1, ℓ + m ≤ n − 1, or G = Kk + Kℓ + Km, where k, ℓ,m ≥ 1, k + ℓ + m = n.
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