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a b s t r a c t

In 1995, Brouwer proved that the toughness of a connected k-regular graph G is at
least k/λ − 2, where λ is the maximum absolute value of the non-trivial eigenvalues
of G. Brouwer conjectured that one can improve this lower bound to k/λ − 1 and that
many graphs (especially graphs attaining equality in the Hoffman ratio bound for the
independence number) have toughness equal to k/λ. In this paper, we improve Brouwer’s
spectral bound when the toughness is small and we determine the exact value of the
toughness for many strongly regular graphs attaining equality in the Hoffman ratio
bound such as Lattice graphs, Triangular graphs, complements of Triangular graphs and
complements of point-graphs of generalized quadrangles. For all these graphs with the
exception of the Petersen graph, we confirm Brouwer’s intuition by showing that the
toughness equals k/(−λmin), where λmin is the smallest eigenvalue of the adjacencymatrix
of the graph.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The toughness t(G) of a connected graphG is theminimumof |S|
c(G\S) , where theminimum is taken over all vertex subsets S

whose removal disconnectsG, and c(G\S)denotes the number of components of the graphobtainedby removing the vertices
of S from G. A graph G is called t-tough if t(G) ≥ t . Chvátal [10] introduced this parameter in 1973 to capture combinatorial
properties related to the cycle structure of a graph. The toughness of a graph is related to many other important properties
of a graph such as Hamiltonicity, and the existence of various factors, cycles or spanning trees and it is a hard parameter to
determine exactly (see the survey [2]). Two of Chvátal conjectures from [10] motivated a lot of subsequent work. The first
conjecture stated that there exists some t0 > 0 such that any graph with toughness greater than t0 is Hamiltonian. This
conjecture is open at present time and Bauer, Broersma and Veldman [3] showed that if such a t0 exists, then it must be at
least 9/4. The second conjecture of Chvátal asserted the existence of t1 > 0 such that any graphwith toughness greater than
t1 is pancyclic. This was disproved by several authors including Alon [1], who showed that there are graphs of arbitrarily
large girth and toughness. Alon’s results relied heavily on the following theorem relating the toughness of a regular graph
and its eigenvalues. If G is a connected k-regular graph on n vertices, we denote the eigenvalues of its adjacency matrix as
follows: k = λ1 > λ2 ≥ · · · ≥ λn and we let λ = max(|λ2|, |λn|).

Theorem 1.1 (Alon [1]). If G is a connected k-regular graph, then

t(G) >
1
3


k2

kλ + λ2
− 1


. (1)
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Around the same time and independently, Brouwer [6] discovered slightly better relations between the toughness of a
regular graph and its eigenvalues.

Theorem 1.2 (Brouwer [6]). If G is a connected k-regular graph, then

t(G) >
k
λ

− 2. (2)

Brouwer [7] conjectured that the lower bound of the previous theoremcan be improved to t(G) ≥
k
λ
−1 for any connected

k-regular graph G. This bound would be best possible as there exists regular bipartite graphs with toughness very close to 0.
Brouwer [7] mentioned the existence of such graphs, but did not provide any explicit examples. At the suggestion of one of
the referees, we briefly describe a construction of such graphs here. Take k disjoint copies of the bipartite complete graph
Kk,k without one edge, add two new vertices and make each of these new vertices adjacent to one vertex of degree k − 1
in each copy of Kk,k minus one edge. The resulting graph is bipartite k-regular and has toughness at most 2/k since deleting
the two new vertices creates k components.

Liu and Chen [15] found some relations between the Laplacian eigenvalues and the toughness of a graph. They also
improved the eigenvalue conditions of Alon and Brouwer for guaranteeing 1-toughness.

Theorem 1.3 (Liu and Chen [15]). If G is a connected k-regular graph and

λ2 <


k − 1 +

3
k + 1

, k even

k − 1 +
2

k + 1
, k odd

(3)

then t(G) ≥ 1.

In the first part of our paper, we improve Theorems 1.1–1.3 in certain cases. For small τ , we obtain a better eigenvalue
condition than Alon’s or Brouwer’s that implies a regular graph is τ -tough. We also determine a best possible sufficient
eigenvalue condition for a regular graph to be 1-tough improving the above result of Liu and Chen. We note here that Bauer,
van den Heuvel, Morgana and Schmeichel [4,5] proved that recognizing 1-tough graphs is an NP-hard problem for regular
graphs of valency at least 3. Our improvements are the following two results.

Theorem 1.4. Let G be a connected k-regular graph on n vertices, k ≥ 3, with adjacency eigenvalues k = λ1 > λ2 ≥ · · · ≥ λn
and edge-connectivity κ ′. If τ ≤ κ ′/k is a positive number such that λ2(G) < k −

τk
k+1 , then t(G) ≥ τ .

Theorem 1.5. If G is a connected k-regular graph and

λ2(G) <


k − 2 +

√
k2 + 8

2
when k is odd

k − 2 +
√
k2 + 12

2
when k is even

(4)

then t(G) ≥ 1.

The proofs of Theorems 1.4 and 1.5 are similar to the one of Liu and Chen [15] and are contained in Section 2. We show
that Theorem 1.5 is best possible in the sense that for each k ≥ 3, we construct examples of k-regular graphs whose second
largest eigenvalue equals the right hand-side of inequality (4), but whose toughness is less than 1. These examples are
described in Section 3. Our examples are regular graphs of diameter 4 and their existence also answers a question of Liu and
Chen [15, p. 1088] about the minimum possible diameter of a regular graph with toughness less than 1.

In [7], Brouwer also stated that he believed that t(G) =
k
λ
for many graphs G. Brouwer’s reasoning hinged on the fact that

a connected k-regular graphGwith n vertices attaining equality in theHoffman ratio bound (meaning that the independence
numberα(G) ofG equals n(−λmin)

k−λmin
; see e.g. [8, Chapter 3] or [13, Chapter 9]) and having λ = −λmin, is likely to have toughness

equal to k/λ = k/(−λmin). Brouwer deduced that for such a graph G, k/λ is definitely an upper bound for the toughness,
(as one can take S to be the complement of an independent set of maximum size nλ

k−λ
and then t(G) ≤

|S|
c(G\S) = k/λ) and

suggested that for many such graphs k/λ is the exact value of t(G).
In the second part of the paper, we determine the exact value of the toughness of several families of strongly regular

graphs attaining equality in Hoffman ratio bound, namely the Lattice graphs, the Triangular graphs, the complements of
the Triangular graphs and the complements of the point-graphs of generalized quadrangles. Moreover, for each graph G
above, we determine the disconnecting sets of vertices S such that |S|

c(G\S) equals the toughness of G. We show that for all
these graphs except the Petersen graph, the toughness equals k/(−λmin), where k is the degree of regularity and λmin is
the smallest eigenvalue of the adjacency matrix. These results are contained in Section 4. In Section 4.1, we prove that the
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