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a b s t r a c t

This paper considers the challenge of recognizing how the properties of a graph determine
the performance of graph coloring algorithms. In particular, we examine how spectral
properties of the graphmake the graph coloring task easy or hard.We address the question
of when an exact algorithm is likely to provide a solution in a reasonable computation
time, when we are better off using a quick heuristic, and how the properties of the
graph influence algorithm performance. A new methodology is introduced to visualize
a collection of graphs in an instance space defined by their properties, with an optimal
feature selection approach included to ensure that the instance space preserves the
topology of an algorithm performance metric. In this instance space we can reveal how
different algorithms perform across a variety of instance classes with various properties.
Wedemonstrate themethodology using a sophisticated branch and bound exact algorithm,
and the faster heuristic approaches of integer rounding of a linear programming relaxation
of the graph coloring formulation, as well as a greedy degree-saturation heuristic. Our
results demonstrate that spectral properties of the graph instances can provide useful
descriptions of when each of these algorithms will provide the best solution for a given
computational effort.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

It is a commonly held view that exact algorithms are only likely to solve small instances ofNP-hard optimization problems
within a reasonable computation time, and that heuristics are necessary for larger instances [68]. Likewise, it is frequently
assumed that heuristics are unlikely to give exact solutions, but will quickly converge to near-optimal solutions. Both of
these assumptions should be challenged, since instance size is not the only determinant of whether an exact algorithm
will find an instance easy or hard to solve, nor whether a heuristic will find a near-optimal solution. Much research has
been conducted on what makes optimization problems hard [38] and the role of certain properties of the instances that
contribute to phase transition boundaries [14,23,1,28], whereby an instance becomes harder to solve as a key property of
the instance is changed, such as edge density in graph coloring [1]. A recent survey has described a comprehensive collection
of features that determine hardness for a wide range of common optimization problems [54], and showed that instance
size is frequently not the only significant feature, with other properties like correlation coefficients playing an important
role [3,30].

The No-Free-Lunch (NFL) Theorems [64,17] tell us that any general algorithm will find some instance classes difficult
compared to another algorithm that exploits some prior knowledge of the characteristics of an instance class. From this idea
has come an approach known as algorithm portfolios [37,36], whereby training data is used to build a model that predicts
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how each of a collection of algorithms is likely to perform for a given instance, based on measurable properties, and the
model is then used on unseen data to predict the best algorithm. This approach has proven to be a powerful one, winning
various competitions [66,67,43,41], and helps to circumvent the NFL Theorem by ensuring that knowledge of the instance
properties is considered by a meta-algorithm.

These ideas date back to the 1970s, when the Algorithm Selection Problem (ASP) was first posed by Rice [49], and
formulated as the task of learning the relationship between a set of features describing problem classes, and the performance
of algorithms. The approach was then applied to the task of selecting the best solver for partial differential equations and
numerical quadrature [61,32,33,47]. Independently, the same ideas have been applied in the machine learning community,
to select the best algorithm for solving classification [10,2] and prediction problems [46,63]—a sub-field known as meta-
learning [62] since the approach is to learn about learning algorithm performance. A discussion about how these ideas have
been applied to a variety of fields of research can be found in Smith-Miles [51].

More recently, we have been applying these ideas to understand how optimization algorithm performance is affected
by instance properties, considering the Travelling Salesman Problem [56], Scheduling [52], timetabling [53], quadratic
assignment problems [50], and graph coloring [57]. The latter paper considered two heuristics: a degree saturation graph
coloring heuristic called DSATUR [65] and a tabu search heuristic downloaded from Culberson’s web resources for graph
coloring [18]. The analysis showed that the best algorithm for the five sets of instance classes from Culberson’s instance
generators [18] could be predicted quite accurately (more than 93% accuracy on out-of-sample testing) using some simple
properties of graphs. The region in instance space where each algorithm outperforms the other is known as the algorithm
footprint [16], and we have previously provided a methodology for quantifying the area of each algorithm’s footprint as a
comparative measure of performance [55].

In this paper, we extend this work to consider how such an approach can be used to determine when an exact algorithm
can be expected to deliver a solution within a reasonable computation time, and when a quick heuristic might be expected
to be more productive. If a heuristic can obtain the same solution as an exact approach in a much quicker time, then the
exact algorithm is unnecessary and not worth the wait. We ask the question, under what conditions of a graph instance can
we expect that a sophisticated exact algorithm will be worth the computational effort? Our exact algorithm is a branch-and-
bound approach [39] which utilizes the DSATUR heuristic and involves solving the linear programming (LP) relaxation at
the root node. So we can consider that this sophisticated exact algorithm has some exit points where we could terminate
with a heuristic solution. In this paper we also extend the collection of properties of the graph to consider many spectral
features, as well as other invariant graph properties that have been proposed recently to enable new conjectures to be
formed about graphs [12]. We augment our previous methodology to include, not just machine learning of the relationships
between features and algorithm performance, but a visual exploration of a well-defined instance space. This instance space
is created by performing optimal feature selection in amanner that projects the instances to a two-dimensional spacewhere
the algorithm performance has been topologically preserved. Inspection of the distribution of features across this instance
space permits insights to be formed about how certain features are influencing algorithm performance in a way that is
hidden from standard machine learning approaches to predicting the winning algorithm.

In Section 2we briefly describe the task of graph coloring and discuss the branch-and-bound algorithm and heuristics we
consider in this paper. In Section 3 we then present the framework of the Algorithm Selection Problem [49,51] that enables
our graph coloring algorithm investigation to be described, including the instances, features, algorithms, and performance
metrics. Section 4 proposes the methodology for generating a topology preserving instance space via optimal feature
selection to enable clear visualization of the algorithm footprints and the impact of the chosen features. Experimental results
are presented in Section 5 to demonstrate the methodology, and Conclusions and future research directions are discussed
in Section 6.

2. Graph coloring algorithms

A graph G = (V , E) comprises a set of vertices V and a set of edges E that connect certain pairs of vertices. The graph
coloring problem (GCP) is to assign colors to the vertices, minimizing the number of colors used, subject to the constraint
that two vertices connected by an edge (called adjacent vertices) do not share the same color. The optimal (minimal) number
of colors needed to solve this NP-complete problem is called the chromatic number of the graph. Graph coloring finds
important applications in problems such as timetabling, where events to be scheduled are represented as vertices, with
edges representing conflicts between events, and the color representing the time period [13,19].

Due to the NP-completeness of this problem, many heuristics have been designed [45,22]. One of the earliest heuristics
was DSATUR [11,65], which was shown to be exact for bipartite graphs. The saturation degree of a vertex is defined to be the
number of different colors to which it is adjacent. The DSATUR (degree saturation) heuristic is a simple approach to coloring
a graph is shown in Algorithm 1.

For non-bipartite graphs though, the performance of DSATUR is not optimal, and many more sophisticated search
strategies have been employed to provide effective heuristics for general graphs, including tabu search [29], simulated
annealing [34], iterated local search [15], scatter search [26], genetic algorithms [21], and hybrid approaches [20,9]. Just as
the performance of DSATUR depends on the bipartivity of the graph, we should also expect the performance of any method
to depend on various properties of the graph, but the relationship between the properties of the graph and the performance
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