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a b s t r a c t

We unify and generalize several inequalities for the number wk of walks of length k in
graphs, and for the entry sum of matrix powers.

First, we present a weighted sandwich theorem for Hermitian matrices which gener-
alizes a matrix theorem by Marcus and Newman and which further generalizes our for-
mer unification of inequalities for the number of walks in undirected graphs by Lagarias
et al. and by Dress and Gutman. The new inequality uses an arbitrary nonnegative weight-
ing of the indices (vertices) which allows to apply the theorem to index (vertex) subsets
(i.e., inequalities considering the numberwk(S, S) of walks of length k that start at a vertex
of a given vertex subset S and that end within the same subset). We also deduce a stronger
variation of the sandwich theorem for the case of positive-semidefinite Hermitianmatrices
which generalizes another inequality of Marcus and Newman.

Further, we show a similar theorem for nonnegative symmetric matrices which is an-
other unification and generalization of inequalities for walk numbers by Erdős and Si-
monovits, by Dress and Gutman, and by Ilić and Stevanović.

In the last part,we generalize lower bounds for the spectral radius of adjacencymatrices
and upper bounds for the energy of graphs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Motivation

In this work, we investigate powers of Hermitian matrices. We present inequalities relating entries of different powers
of a matrix to each other. In the special case of an adjacency matrix, the entries of its kth power are the numbers of walks
of length k between the vertices that correspond to the row/column indices. Similar to the number of present edges in a
(sub)graph that is used to define the (statistical) density of this (sub)graph by dividing it through the number of possible
edges in a complete graph on the same vertex set, the number of walks of length k induces a density of order k: the ratio
of the number of k-walks to the maximum possible number of k-walks [20]. Applying our inequalities to this concept of
density yields statements about the relation between densities of different orders.

Another application of our results is found in symmetric models of computation, which exhibit undirected configuration
graphs. One particular example for such amodel is the symmetric Turingmachinewhichwas defined by Lewis and Papadim-
itriou [23] to characterize the complexity class Symmetric Logspace (SL) for which undirected s, t-connectivity (USTCON) is
a complete problem. In this context, the number of computation paths consisting of k transitions equals the number of walks
of length k in the corresponding configuration graph starting at the initial configuration. Assuming that the configuration
graph is finite, it is also interesting to investigate the total number of different computation path segments of certain lengths
starting at arbitrary vertices. Bounds could be given in terms of the number of configurations, total number of transitions,
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number of transitions incident to each configuration, and so on. Other bounds could take into account the number of com-
putation path segments of other lengths.

A more universal application of counting the number of walks is to exploit their relationship to the largest eigenvalue λ1
of adjacency matrices. To this end, we derive new lower bounds for λ1 in terms of the number of walks. In turn, λ1 can be
used to bound other important graph measures. In [14], Hoffman obtained the bound 1 − λ1/λn ≤ χ for the chromatic
number χ , relating it to the ratio of λ1 to the smallest eigenvalue λn. Also, the clique number ω can be bounded usingWilf’s
inequality [34] n/(n−λ1) ≤ ω. Another interesting application ofλ1 considers the SISmodel of disease spreading, inwhich a
susceptible (S) individual is possibly infected by an already infected (I) neighbor, and subsequentlymay become cured again.
If an infected individual infects a certain neighbor with probability β and is cured with probability δ, then the expected size
of the infected part of the population reduces exponentially if β/δ < 1/λ1, i.e., 1/λ1 is the epidemic threshold in this model
(see [10,3]). Besides the spreading of viruses in biological and computer networks, this model can also be applied to rumor
spreading and information broadcasting.

More information on applications of graph spectra can be found in [27,6,4,33].

1.2. Notation and basic facts

Throughout the paper, we assume thatN denotes the set of nonnegative integers and that [n] is the set {1, . . . , n}. Let A
be an n× n-matrix with complex entries. We write sum(A) for the sum of the entries of A. For the kth power Ak of A, we use
a[k]
i,j to denote the (i, j)-entry of Ak and define ai,j = a[1]

i,j for convenience.
Let G = (V , E) be an undirected graph having n vertices,m edges, and adjacencymatrix A. We investigate directedwalks,

i.e., sequences of vertices, where each pair of consecutive vertices is connected by an edge. Nodes and edges can be used
repeatedly in the same walk. The length k of a walk is counted in terms of edges. For k ∈ N and x, y ∈ V , let wk(x, y) denote
the number of walks of length k that start at vertex x and end at vertex y. Since G is undirected, we havewk(x, y) = wk(y, x).
For vertex subsets X, Y ⊆ V ,wk(X, Y ) denotes the number ofwalks of length k starting at a vertex of X and ending at a vertex
of Y . We write wk(x) =


y∈V wk(x, y) for the number of walks of length k that start at node x (which is the same as the

number ofwalks of length k that end at node x). Accordingly,wk =


x∈V wk(x)denotes the total number ofwalks of length k.
For the adjacency matrix A of a graph G, we will frequently make use of the equalities wk = sum(Ak) and wk(i, j) = a[k]

i,j .

1.3. Related work

1.3.1. Inequalities for the number of walks
First, we briefly review results for undirected graphs. Let a, b, c, k, ℓ, p ∈ N be nonnegative integers. Erdős and Si-

monovits (and actually Godsil) [9] noticed that the following inequality using the average degree d = 2m/n can be shown
using results of Mulholland and Smith [28,29], Blakley and Roy [2], and London [24]:

wk ≥ nd
k
= n


w1

w0

k

or wk
1 ≤ wk−1

0 wk. (1)

Lagarias, Mazo, Shepp, and McKay [21,22] showed that

w2a+b · wb ≤ w0 · w2(a+b), (2)

and presented counterexamples for wr · ws ≤ n · wr+s whenever r + s is odd and r, s ≥ 1. Dress and Gutman [8] reported
the inequality

w2
a+b ≤ w2a · w2b. (3)

These inequalities were generalized by Täubig et al. [32] to the ‘‘sandwich theorem’’ (for nonnegative integers a, b, c ∈ N):

w2a+c · w2a+2b+c ≤ w2a · w2(a+b+c) (4)

and the following inequality (for nonnegative integers k, ℓ, p ∈ N and k ≥ 2 or w2ℓ > 0):

wk
2ℓ+p ≤ wk−1

2ℓ · w2ℓ+pk. (5)

For all graphswithw2ℓ > 0 (i.e., for graphswith at least one edge or for ℓ = 0), this is equivalent to (w2ℓ+p/w2ℓ)
k
≤ w2ℓ+pk/

w2ℓ and (w2ℓ+p/w2ℓ)
k−1

≤ w2ℓ+pk/w2ℓ+p.
They also showed that similar inequalities are valid for closed walks (for all v ∈ V ):

w2a+c(v, v) · w2a+2b+c(v, v) ≤ w2a(v, v) · w2(a+b+c)(v, v) (6)

and, for k ≥ 2 or w2ℓ(v, v) > 0,

w2ℓ+p(v, v)k ≤ w2ℓ+pk(v, v) · w2ℓ(v, v)k−1. (7)
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