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a b s t r a c t

It is well known that the number of vertices of a graph of diameter two and maximum
degree d is at most d2 + 1. The number d2 + 1 is the Moore bound for diameter two. Let
C(d, 2) denote the largest order of a Cayley graph of degree d and diameter two. Up to
now, the only known construction of Cayley graphs of diameter two valid for all degrees d
is a construction giving C(d, 2) > 1

4d
2
+d. However, there is a construction yielding Cayley

graphs of diameter two, degree d and order d2 − O(d
3
2 ) for an infinite set of degrees d of a

special type.
In this article we present, for any integer d ≥ 4, a construction of Cayley graphs of

diameter two, degree d and of order 1
2d

2
− t for d even and of order 1

2 (d
2
+d)− t for d odd,

where 0 ≤ t ≤ 8 is an integer depending on the congruence class of dmodulo 8.
In addition, we show that, in asymptotic sense, the most of record Cayley graphs of

diameter two is obtained by our construction.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In graph theory, the degree-diameter problem is to find the largest order n(d, k) of a graph with given maximum degree
d and diameter k. There is a well known upper bound on the order n(d, k) called the Moore bound, which gives for every
d, k ≥ 1 the bound n(d, k) ≤ 1+ d+ d(d− 1) + d(d− 2)2 + · · · + d(d− 1)k−1. The graphs satisfying the Moore bound are
Moore graphs. If k = 1 or d ≤ 2, the Moore bound is achieved by complete graphs Kd+1 (k = 1, d ≥ 1) and by odd-length
cycles C2k+1 (d = 2, k ≥ 1). For diameter k = 2 there are Moore graphs only for degrees d = 2 (the 5-cycle C5), d = 3
(Petersen graph), d = 7 (Hoffman–Singleton graph) and (possibly) for d = 57 (a hypothetical graph of degree 57 on 3250
vertices). Note that if there is a Moore graph for k = 2 and d = 57, the graph is not vertex-transitive [2] and, in addition, it
has very small automorphism group (of order at most 375) [5]. For other combinations of degrees and diameters there are
no Moore graphs. A survey about the history and development on this topic can be found in [7].

For diameter k = 2 theMoore bound is n(d, 2) ≤ d2 +1. It was shown in [3] that for every degrees d ≥ 4, d ≠ 7, d ≠ 57
the bound on the order of a graph of diameter two and degree d is n(d, 2) ≤ d2 − 1. Brown’s graphs [1] provide the lower
bound on n(d, 2) in the form n(d, 2) ≥ d2 − d + 2 if (d − 1) is a power of 2 and n(d, 2) ≥ d2 − d + 1 if (d − 1) is an odd
prime power. In [10], the authors constructed modified Brown’s graphs to show that n(d, 2) ≥ d2 − d1.525 for all sufficiently
large d.

It is known, that neither Brown’s graphs nor their modification is vertex-transitive. Therefore, it is interesting to
determine the maximum number of vertices of a vertex-transitive graph or a Cayley graph of degree d and diameter two. In
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what followswewill denote by v(d, 2) and C(d, 2) themaximumorder of a vertex-transitive and Cayley graph, respectively,
of diameter two anddegree d. Since Cayley graphs are vertex transitive,wehaven(d, 2) ≥ v(d, 2) ≥ C(d, 2) for anydegree d.
In the case of vertex-transitive graphs, until recently the best lower bound was a construction in [6] giving vertex-transitive
McKay–Miller–Širáň graphs of order 8

9 (d+
1
2 )

2 for all degrees d =
1
2 (3q− 1) where q ≡ 1 (mod 4) is a prime power. It was

shown in [6] that these graphs are non-Cayley.
For Cayley graphs, until now, the best known lower bound valid for all degrees d is a folklore bound C(d, 2) ≥ d+2
2

  d+2
2


=

1
4d

2
+d+1 for even d and 1

4d
2
+d+

3
4 for odd d. The groups used in this construction are direct products of

cyclic groups Z
d+2
2

 × Z
d+2
2

. In [8], the authors constructed Cayley graphs of order 1
2 (d + 1)2 for all degrees d = 2q − 1

where q is an odd prime power. Using non-trivial results on the distribution of primes, it has been shown in [10] that for all
sufficiently large d, there is a Cayley graph of diameter two and of order 1

2d
2
−O(d1.525). Just very recently, in [9] the authors

constructed Cayley graphs of order d2 − O(d
3
2 ) for an infinite set of numbers of very special type.

In this article we show that for every integer d ≥ 4 there is a Cayley graph of degree d, diameter two and of order 1
2d

2
− t

for d even and of order 1
2 (d

2
+d)− t for d odd, where 0 ≤ t ≤ 8 is an integer depending on the congruence class of dmodulo

8. This is a significant improvement of the known results valid for all degrees. In addition, we show that our construction
provides infinitely many largest known Cayley graphs of diameter two.

2. The results

Let Γ be a finite group and let X be a finite generating set of Γ such that X is unit-free and it is closed under taking
inverses. That is, 1Γ ∉ X and for each x ∈ X we have x−1

∈ X . The Cayley graph for the underlying group Γ and the
generating set X is the graph G = Cay(Γ , X) with vertex set Γ and edges of the form {g, gx}, g ∈ Γ , x ∈ X . Because the sets
{g, g · x} and {gx, gx · x−1

} are the same, the Cayley graph G is undirected. Since the mapping ϕh : V (G) → V (G), h ∈ Γ

defined by ϕh(g) = hg, g ∈ V (g) is an automorphism of G, Cayley graphs are automatically vertex-transitive.
The dihedral group Dn of order 2n is the group with standard presentation

Dn = ⟨a, b|an = b2 = 1, ba = a−1b⟩ (1)
and the multiplicative cyclic group Zn of order n is the group

Zn = ⟨A|An
= 1⟩. (2)

The direct product of groups Dm and Zn is the group of order 2mnwith presentation

Γ = Dm × Zn = ⟨a, b, A|am = b2 = An, ba = a−1b, Aa = aA, bA = Ab⟩. (3)
We will write the elements of Γ in the form aiAjbk, i ∈ {0, 1, . . . ,m − 1}, j ∈ {0, 1, . . . , n − 1}, k ∈ {0, 1}. Throughout the
paper, the unit element of any group will be denoted by ‘‘1’’.

The following definition plays a key role in our construction of Cayley graphs of diameter two.

Definition 1. Let i be an integer. We define the function δ : Z → Z by

δ(i) = i · (−1)⌊i/2⌋. (4)

That is, δ(i) = i for i ≡ 0, 1 (mod 4) and δ(i) = −i for i ≡ 2, 3 (mod 4).

To simplifying the notation, we will frequently denote the set of first positive integers by symbol [n], that is, [n] = {1, 2,
. . . , n}.

Since our construction of Cayley graphs depends on the parity of degree d, in what follows we will consider two cases:
case (I) for even degrees and case (II) for odd degrees d.

Theorem 1 (Main Theorem). Let d ≥ 4 be an integer and let s ∈ {−2, −1, 0, 1}. Then there exist a group Γ and a generating
set X for Γ such that the Cayley graph G = Cay(Γ , X) has diameter two, degree d and order
(I) |G| =

1
2 (d − 2s)(d + 2s), for d ≡ 2s + 4 (mod 8) and

(II) |G| =
1
2 (d − 2s − 1)(d + 2s + 2), for d ≡ 2s + 5 (mod 8).

Before proving the Main theorem, we will prove the following two useful Lemmas which we will need later in the proof of
Theorem 2.

Lemma 1. Let n ≥ 1 be an odd number and let
(I) Y0 = {1 + δ(i), −1 + δ(i)|i ∈ {1, 2, . . . , 2n}} (mod 4n)
(II) Y1 = {1 + δ(i), −1 + δ(i)|i ∈ {1, 2, . . . , 2n + 1}} (mod 4n + 3).
Then
(I) Y0 = {0, 2, 3, . . . , 4n − 1}, for n ≠ 1

Y0 = {0, 1, 2, 3}, for n = 1
(II) Y1 = {0, 2, 3, . . . , 4n + 2}.
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