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a b s t r a c t

We study the problem of maximizing Betti numbers of simplicial complexes. We prove an
upper bound of 1.32n for the sum of Betti numbers of any n-vertex flag complex and 1.25n

for the independence complex of a triangle-free graph. These findings imply upper bounds
for the Betti numbers of various related classes of spaces, including the neighbourhood
complex of a graph. We also make some related observations.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

There is a number of topological and algebraic invariants associated to graphs and simplicial complexes. The starting
point for this investigation is the following kind of extremal problem: given a bound on the size of the combinatorial input,
how large values can those invariants take? For example, if a simplicial complex has at most n vertices, then it has at most 2n

faces, and trivially its homology groups can have total dimension at most 2n. This is asymptotically optimal. The k-skeleton
of the n-simplex is known to be homotopy equivalent to the wedge of

 n
k+1


spheres, hence for k ≈ n/2 its homology has

dimension approximately 2n
√
n . This construction is optimal by [2].

Considerably better upper bounds can be obtained by considering restricted families of complexes. In this work we
concentrate on flag complexes. A simplicial complex K is called flag if the set of faces of K coincides with the set of cliques
in the 1-skeleton of K , hence K is also called a clique complex. Clique complexes appear throughout geometry, topology
and combinatorics, some notable examples being order complexes of posets and Vietoris–Rips complexes of discrete metric
spaces.

From the point of view of our applications it will be convenient to take the following, equivalent approach to flag
complexes. The independence complex Ind(G) of a graph G is a simplicial complex whose faces are the independent sets of G
(the sets W ⊆ V (G) for which the induced subgraph G[W ] has no edges). Clearly the family of independence complexes of
graphs is the same as the family of flag complexes as an independent set inG is a clique in the graph-theoretic complementG.

We fix once and for all a field k. For a finite type topological space X let b(X) =


i dimkHi(X; k) denote the total
Betti number of X (we are using reduced homology; in particular b(∅) = dimkH−1(∅; k) = 1). In Section 3 we will define
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Table 1
Lower and upper bounds appearing in this paper, with n denoting the number of vertices of G.

Quantity Best construction Upper bound

b(Ind(G)) (Example 6.1) 1.320n (Theorem 1.1) 1.320n

b(Ind(G)), G triangle-free (Example 6.2) 1.160n (Theorem 1.1) 1.250n

b(N (G)) (Example 6.8) 1.316n (Theorem 1.2) 1.562n

β(G) (Example 6.5) 2.299n (Proposition 3.2) 2.320n

β(G), G triangle-free (Example 6.6) 2.070n (Proposition 3.2) 2.250n

constants

Θ = 41/5
≈ 1.32 and Γ ≈ 1.25

for which we have the next result.

Theorem 1.1. For any n-vertex graph G we have

b(Ind(G)) ≤ Θn.

If G is triangle-free then

b(Ind(G)) ≤ Γ n.

Let us make a few comments. The first inequality can also be deduced from more general results of [12], although the
above formulation seems far from being ‘‘well-known’’. For the smaller class of order complexes one can use an even earlier
result of [20]. Theorem 1.1 provides a benchmark for studying families of graphs G for which b(Ind(G)) is exponential in the
number of vertices n. Such graphs have appeared recently in mathematical physics, see for example [6,9,8]. Independence
complexes of bipartite and triangle-free graphs have also received some attention [1,10], as well as those of other classes of
graphswith forbidden induced subgraphs [5]. It should also be noted that the above are the extremal values, only approached
by tailor-made constructions. The behaviour of Betti numbers for random or geometric flag complexes is a lot more tame,
see [11,7].

The second part of Theorem 1.1 has various consequences listed below. Recall that the neighbourhood complex N (G) of
a graph G is a simplicial complex whose vertices are the non-isolated vertices of G and whose faces are the vertex subsets
which have a common neighbour in G. It is a well-known construction with classical applications to the theory of chromatic
numbers of graphs [16].

Theorem 1.2. We have the following upper bounds.
(a) If K is any simplicial complex with n vertices and m maximal faces then

b(K) ≤ Γ n+m.

(b) If G is a graph with n vertices then its neighbourhood complex N (G) satisfies

b(N (G)) ≤ (Γ 2)n.

(c) If K is any simplicial complex with n vertices and m minimal non-faces then

b(K) ≤ Γ n+m.

Clearly parts (a), (c) give useful bounds (better than 2n) only whenm is sufficiently small, approx.m ≤ 2.1n.
The paper is laid out as follows. Section 2 contains the necessary background and notation. In Section 3we give a proof of

Theorem 1.1 based on the inequality (2). As an immediate application we use Hochster’s formula to derive an upper bound
for the sum of algebraic Betti numbers β(G) of flag complexes and edge ideals.

Theorem 1.2 is proved in Section 4 using the correspondence between arbitrary simplicial complexes and independence
complexes of bipartite graphs.

In Section 5 we investigate complexes without missing d-faces, which are a generalization of flag complexes. We use
Alexander duality to show an analogue, albeit much weaker, of Theorem 1.1 for such complexes. As an aside, we show how
the same methods give bounds on the homological dimension in those classes of complexes.

Unfortunately, of all the upper bounds we present, only the first one in Theorem 1.1 is known to be tight. In Section 6
we will construct examples exhibiting the best lower bounds we were able to find. It is likely that some of them are in fact
optimal. They are summarized in Table 1.

2. Preliminaries

We first introduce some notation and prove basic results.
Graphs. All graphs are finite, undirected and without multiple edges or loops. If v ∈ V (G) then NG(v) is the set of neighbours
of v and NG[v] = NG(v) ∪ {v}. The degree of v is degG v = |NG(v)| and mindeg(G) is the smallest degree of a vertex of G.
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