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a b s t r a c t

A vertex coloring of a graph G is linear if the subgraph induced by the vertices of any two
color classes is the union of vertex-disjoint paths. In this paper, we study the linear coloring
of graphs with small girth and prove that: (1) Every planar graph with maximum degree
∆ ≥ 39 and girth g ≥ 6 is linearly (⌈∆

2 ⌉ + 1)-colorable. (2) There exists an integer ∆0
such that every planar graph with maximum degree ∆ ≥ ∆0 and girth g ≥ 5 is linearly
(⌈∆

2 ⌉ + 1)-colorable. The latter result is best possible in some sense.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graphs considered in this paper are finite, simple and undirected. Unless stated otherwise, we follow the notations and
terminology in [1]. For a planar graph G, we denote its vertex set, edge set, face set, minimum degree and maximum degree by
V (G), E(G), F(G), δ(G) and ∆(G), respectively. For a vertex v, d(v) and N(v) denote its degree and the set of its neighbors in
G, respectively. For a face f of a planar graph G, we use ni(f ) to denote the number of i-vertex incident with f . For integers k
and d, a k(d)-vertex is a k-vertex adjacent to d 2-vertices. A k-vertex (or k-face) is a vertex (or a face) of degree k, a k−-vertex
(or k−-face) is a vertex (or a face) of degree at most k, and a k+-vertex (or k+-face) is defined similarly.

A proper k-coloring of a graph G is a mapping c from V (G) to the set of colors {1, 2, . . . , k} such that any two adjacent
vertices have different colors. Let c be a proper k-coloring of G. If the subgraph induced by the vertices of any two color
classes with respect to c is the union of vertex-disjoint paths, then c is said to be linear and is called a linear k-coloring of G.
The linear chromatic number, denoted by lc(G), of the graph G is the least integer k such that G admits a linear k-coloring.

Yuster [11] first introduced the linear coloring of graphs.With the probabilisticmethod, he proved that lc(G) = O(∆(G)
3
2 )

for a general graph G and constructed graphs Gwith lc(G) = Ω(∆(G)
3
2 ).

Another concept related to linear coloring is frugal coloring of graphs, considered by Hind et al. in [6]. In a coloring c ofG, a
vertex v ofG is said to be k-frugal if every color appears atmost k−1 times in the neighborhood of v. If every vertex is k-frugal
in the coloring c , then G is said to be k-frugal, and the coloring c is called a k-frugal coloring of G. Obviously, a linear coloring
is just a 3-frugal coloring. But the converse may not be true since in a 3-frugal coloring, bicolored cycles are permitted.

The upper bounds of linear chromatic number of graphs have been extensively investigated in the past years, especially
for planar graphs. Let g(G) (or g for simplicity) be the girth of a graph G, which is the length of a shortest cycle of G. Raspaud
and Wang [8] proved that every planar graph Gwith girth g and maximum degree ∆ has lc(G) = ⌈

∆

2 ⌉ + 1 if G satisfies one
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of the following four conditions: (1) g ≥ 13 and ∆ ≥ 3; (2) g ≥ 11 and ∆ ≥ 5; (3) g ≥ 9 and ∆ ≥ 7; (4) g ≥ 7 and ∆ ≥ 13.
lots of sufficient conditions for planar graphs and sparse graphs to have linear chromatic number close to the natural lower
bound can be found in [2–5,7,9,10], interested readers are referred to them for more information on this topic.

It is obvious that lc(G) ≥ ⌈
∆(G)

2 ⌉ + 1. One interesting problem is to find the sufficient condition for graphs to attain this
lower bound. The results in [8] show that planar graphs G can attain the lower bound if g(G) ≥ 7 and ∆(G) ≥ 13.

In this paper, we consider the lower bound of linear coloring of planar graphs with small girth. Actually, we prove the
following theorems.

Theorem 1.1. Every planar graph with maximum degree ∆ ≥ 39 and girth g ≥ 6 is linearly (⌈∆

2 ⌉ + 1)-colorable.

Theorem 1.2. There exists an integer ∆0 such that every planar graph with maximum degree∆ ≥ ∆0 and girth g ≥ 5 is linearly
(⌈∆

2 ⌉ + 1)-colorable.

Theorem 1.2 is best possible in some sense since there exist planar graphs Gwith g(G) = 4 and arbitrary largemaximum
degree ∆ such that lc(G) ≥ ⌈

∆

2 ⌉ + 2. Let us take K2,n for instance. It is easy to verify that g(K2,n) = 4 and K2,n is planar.
However, lc(K2,n) ≥ ⌈

∆

2 ⌉ + 2 if n ≥ 2.
Before starting our main work, we introduce some notations and terminology. Let c be a linear coloring of G, we use c(v)

to denote the color of a vertex v with respect to c. Similarly, for a vertex set S ⊆ V (G), c(S) is denoted to the set of colors
assigned to the vertices of S with respect to c. We use Ci(v) to denote the set of colors appears i times on the neighbors of v.
Obviously, i ∈ {0, 1, 2}.

2. Proof of Theorem 1.1

Proof of Theorem 1.1. We prove this theorem by contradiction. Suppose the theorem is false. Let G be a minimal
counterexample with the fewest vertices. Let L = {1, 2, . . . , ⌈∆

2 ⌉ + 1} be the color set. In the following, we first present
some structures of G, then apply a discharging procedure to show that G does not exist. Hence, the theorem holds.

Lemma 2.1. δ(G) ≥ 2.

Lemma 2.2. G does not contain a 2-vertex u with N(u) = {v, w} such that ⌈
d(v)

2 ⌉ + ⌈
d(w)

2 ⌉ < ⌈
∆

2 ⌉ + 1.

Proof. Suppose to the contrary, u is such a 2-vertex. By the choice of G, G− u has a linear coloring c using ⌈
∆

2 ⌉ + 1 colors. If
c(v) ≠ c(w), then u can receive any color except for c(v), c(w) and those colors that appear twice onN(v) or twice onN(w).
So the number of colors forbidden is at most 2 + ⌊

d(v)−1
2 ⌋ + ⌊

d(w)−1
2 ⌋ = ⌈

d(v)

2 ⌉ + ⌈
d(w)

2 ⌉. Since ⌈
d(v)

2 ⌉ + ⌈
d(w)

2 ⌉ < ⌈
∆

2 ⌉ + 1,
we can extend c to the whole graph G. Otherwise, if c(v) = c(w), then at most 1 + |C2(v) ∪ C2(w)| + |(C1(v) ∩ C1(w))| ≤

⌈
d(v)

2 ⌉+⌈
d(w)

2 ⌉ colors are forbidden to u. Hence,we can easily properly color u to obtain a linear coloring ofG. A contradiction.

Lemma 2.3. Let v be a3-vertex of GwithN(v) = {x, y, z} such that d(x) = 2 and d(y) ≤ 3. If d(z) = 3withN(z) = {v, z1, z2},
then ⌊

d(z1)−1
2 ⌋ + ⌊

d(z2)−1
2 ⌋ ≥ ⌈

∆

2 ⌉ − 3.

Proof. Suppose to the contrary. Let v be such a 3-vertex with ⌊
d(z1)−1

2 ⌋ + ⌊
d(z2)−1

2 ⌋ ≤ ⌈
∆

2 ⌉ − 4. Assume that u is the other
neighbor of x. We consider theworst case that d(u) = ∆ and d(y) = 3. LetN(y) = {v, y1, y2}. By the choice ofG,G−x admits
a linear coloring c with ⌈

∆

2 ⌉ + 1 colors. We will show that we can extend c to the whole graph G, which is a contradiction.
We have the following possibilities.

Case 1. c(u) = c(v) and c(y) ≠ c(z). If |C2(u)| = ⌊
∆−1
2 ⌋ and ∆ is odd, then |C0(u)| = 2 and |C1(u)| = 0. We can color x

with α ∉ {c(u)}∪C2(u). Since c(y) ≠ c(z), v is 3-frugal. Moreover c(x) ∉ C2(u), no 2-colored cycle is induced. The obtained
coloring is a linear coloring of G.

If |C2(u)| = ⌊
∆−1
2 ⌋ and∆ is even, then C0(u) = {c(u)} and |C1(u)| = 1.We can choose the unique color in C1(u) to color x

to keep u 3-frugal. If c(x) ∉ {c(y), c(z)}, then we obtain a linear coloring of G. Otherwise, without loss of generality, assume
c(x) = c(y). We can recolor v with α ∉ {c(x), c(u), c(z), c(z1), c(z2), c(y1), c(y2)}. It is easy to check that the obtained
coloring is a linear coloring of G.

Otherwise, if |C2(u)| < ⌊
∆−1
2 ⌋, then ∆ is odd and |C1(u)| = 2. If {c(y), c(z)} ≠ C1(u), then we can properly color

x such that v is 3-frugal and no 2-colored cycle is established to obtain a linear coloring of G. Now we assume that
{c(y), c(z)} = C1(u). We can color x with c(z). No 2-colored cycle will be induced except the cycles passing uxvz. If this
possibility happens, then we can recolor v with α ∉ {c(x), c(u), c(y), c(z1), c(z2), c(y1), c(y2)}. It is easy to check that the
obtained coloring is a linear coloring of G since |{c(u), c(v), c(x)}| = 3, |{c(y), c(z), c(v)}| = 3 and |{c(y), c(v), c(x)}| = 3.

Case 2. c(u) = c(v) and c(y) = c(z). If |C2(u)| = ⌊
∆−1
2 ⌋ and ∆ is odd, then we can properly color x to obtain a

linear coloring of G except c(z) = L \ (C2(u) ∪ {c(u)}). If c(z) = L \ (C2(u) ∪ {c(u)}), then we erase the color on z and
color x with c(y). Finally, we choose α ∉ {c(v), c(x), c(z1), c(z2)} ∪ C2(z1) ∪ C2(z2) to color z if c(z1) ≠ c(z2); we choose
α ∉ {c(v), c(x), c(z1)} ∪ C2(z1) ∪ C2(z2) ∪ (C1(z1) ∩ C1(z2)) to color z if c(z1) = c(z2). Since |{c(v), c(x), c(z1), c(z2)} ∪

C2(z1) ∪ C2(z2)| ≤ ⌈
∆

2 ⌉ and |{c(v), c(x), c(z1)} ∪ C2(z1) ∪ C2(z2) ∪ (C1(z1) ∩ C1(z2))| ≤ ⌈
∆

2 ⌉, α always exists. It is easy to
verify that the obtained coloring is a linear coloring of G.
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